Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Articles

Page Path
HOME > Restor Dent Endod > Volume 49(2); 2024 > Article
Statistical Research Article An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers
Mohamad Adam Bujangorcid
Restor Dent Endod 2024;49(2):e21.
DOI: https://doi.org/10.5395/rde.2024.49.e21
Published online: May 2, 2024

Clinical Research Centre, Sarawak General Hospital, Ministry of Health Malaysia, Kuching, Sarawak, Malaysia.JFIFddDuckydqhttp://ns.adobe.com/xap/1.0/ Adobed     ! 1AQa"q 2#w8B36v7XRr$9bCt%u&Ws'(xy4T5fH  !1AQaq"2B Rbr#u67Ѳ3sTt5v8Sc$4ĂCÔ%UӅFV ?_Aנj- H>>,m*>fzp"TrKkr^r.|_&]|*vPuܶvoQ1mwVJUhu-I"=LniAƕ8"۲ k*ҿ[yu:.vUQ+)%F DHyVBk>Hy8jݹ q~9D4KRmzQ)^ʔ.J%k_tVi5NTjg!'ky|5asOȻ)R۸ߩFMԿ3L4j6dڜ#NIwUF]JqB/(FafJRzq3\G՛ ?~\ 6)6W4m[O^L0E&rRMض*C .]Unl-1 1r#Rj/&QɈ׉˩s6Rj=5Tg.y.·Pӡ:JJS:C8-2u]d&vUz;7p9 5VnL֢"y)">iי(IDDd| Yj0; LRfS:ktYK%*N2^m|&dğth":ey)uPQZW)gcC3Pv&MMWd&Ŵ۲mvTRoժM03*F3Yd6\8,\hݻ kߔi<k NTwSԪmljj[>->ptU%'LR>&EBH$MQAUx[$Z6vi&_a.KIQ{hyƒ j"JOC9eFҝfj;˚Ω<[3_m% lQ@4g=5$(J]Yc-OMq<Ǎ wSzڗ)k$7VIP붾ͯnV+卵*t]iЎD31~SA1éC2u)ʼnQn-Uoi3:grI8ؓWm*G zܕ)ZקJ}Y YlGeJ6cB2I NS3Q>k=KTBT]W6+SOXQgGR? telˊ%-Re\hѯ2TF"C/OJΩ6r[N.0{SpljjX1“jOsӥ;ҭhe}xu`Ք&.)yO̒ Fߑ.$Qw;9Iw2o+RVJMSOj[SoҌZ%;`d$blQ{Ro{Imڌ>3egf\O֝Uzx"䢸g+mv%Gʆ:|V[N'&ס-ޝ'kfE|K,G&˳98Juin/\\Qݿ̋v~Ǩ!rtWU d|E߫R4d}.qPw*Ӭv5YEcn~f5c%MTMkb-F>5JT,})QHg%{("ӔȸWMsYyWNRrkkJr0XドnͫT}r-jj,Ŕʍ\Q2Ri>v$5!]"JB2WɅ)]VԜUc8i|.jeRO6^V.¸ Q&#|ܶ-*uOG%JAtRZRr]FFG\۩w+?'zչSѧt jz>KW&ot{7P&2D;&\\>Q2JzܗAKSfeNn[jRrԕf6,q,F1tRfԗ>vֶևj-&R'Zi2=xv~Elbsvm8=ӛ"ū񕜈BȩlWau[]ٷBߨF~J!|Ipr3R̴#Yp)={7:G{+:\W}n|Q#%)7^-h"Ƒq:M*%J&$T軨I333׎g_- ucBwwjp[6i25$̏bU’ٱRv?G\~#Iͪb7<<}Ezt" q_Inw,7-d,G÷%T* Wg1"䥱kq/A.,_KhqŒxwvo u2ۥۧ.bQ}XκA$֣ +K״ZUNmڸII{.v{5z5ѮRme[moyƾd~cRݾK'j.\i&/S6f|b=5: p!6i_ 4j6=.si˧eƾtS^c.Y^RJVS-Vi3,esi08?H$GvZgg?gi䤟2adw릿:"۪lkSN>q-4kI܋ێe̊qۅgDoѨ9; #T.Q;7#~_Ufstb_'w~Xw1Xk,vcOt._}v}8"(4Z\ۘgk?J?bm_c!g{HZV]Fkk%~gEt)b秴vΰB|꽸}mp~E6ݹv;7P٤v+ri*3Ԣ|'O14_~7nP{7ZU\Vű[ +7󖱅o#:ǥŬ\|3r%TJX]V7ez¨Y]lc|O3V! R zbJ'PnGqVJ"19WVeOF埜EaEJωqCN5Z g-9[S<$sUK5b|7sn\7x qmv##FF\ w[=-43$^ooVSiXօv7iB۴yg>]Vf"r$J3""32!Zh[K%7GvNLs+4nB/B{vlsobJaҺJR:0g%&zR\ S3T[&ִor*ⷳc3ʊO[iozW٨%$gn:ܶWwFBԹjHP&z u&F2\f;ipW73 [; '_̽b;vib!oec dC-tS__$Xs]l9&z$2/N>%'[}b{h/{`{Ji׉׏ YJB/X%}.|+{(S:qz]4_Kѵo`^tY_4S#* ^zvݾMr+TrkQ g.8Ͽ^i>ӈǙvix>$o( ^qt*&t1oJVu-ql5U6jCЉmĻ*"?JT=K'O/|=Vo}l0b}}f?X[?/\JSBe,kP8ETJ==?.p5ފgbU9}ǶdNKk—_$8̸͓ۍ8Di\BԿ-1v{FF]|.^ۅ{vl12׏z7-R7wE?\nh\jN/Kձr_oBw"N QMBZqe-m:ӨSn6j4%!hQ;sv'm4kcM=!8\m[M4{SMliۇ%eֽR&N:{2A8)THLK3Zj[jPBx#BگMf:G1\`edcʮ?|w(-̮vXt,bW2;.ιNHRR#YwTM"<;mk\.foIDjmlJ;vxy7o7i\,KQŊ9d^Mmgc L*.T6tLeIuOH3SJQ3=F/ʿ<9\JM6mN6=<{xkP!F1QR[I$6ُimXu2An2yԒMU q f[IB-'䤯jYm52&JG\zд\~vdg QtHGXw&1Lw+nDEdC1w|YJmvP)HZ>i0BPβә?R:QO["]I_Jʏۍ>QKyu^bycBq4lXF~l [\*N>-J6,Gq(Zr5h]CwYӤU~ʶߑ u*SIv%ZfJ7)! FS*s_\|IŸZ)J ]ܜi4"z[+Z,MOZ))}|Ʀ(RUNIII.S'ˍO~˨rn}M)xxӕ0 eyҵ7YMAB]ӣU:/ѭ*6bcwP͵ "+qēVjŹO|GtY4V j[mLV M -m>",B$ GD1~j6O4|LxnNmqATNR3ε|DŽa[fmn-ڭ+FiK7Pcm;r5 l8r{#-]'nrFh2ruycb;pW=njRqRJ(d mnpckNnʹ+6]tz~E=ʕ l ZZ5jSi3#47.Lcfe`9؏v囜.F\-UZ:*0_<Νu9Lӵm&)_3\^ҹ3"1n1v_|uRʞͫr'iȧN_kH׺8xXrj=\МH)V\ˬ.Xʸ oVRC}ySU9/OBY먌5 ٿwޞ)rw8Ӫi5*5ZΗcGƱ !ZۄlmpjJ -l <R̵/JAպZuq\IdUS 48wXJJtcg4cI~aqߓwŷrm-v)G7yS^7H^-\mŌAq|"m9IBnF㏉9[N+mmy/!KKۉ%n +BdddfFF6FQRN-U5;Sv'm4kcM=Mn)\qιqUd9F%",6MGdT%-+~ f%+y֛^3SrF>6lc(֪vۊN;g._0Sѧ]ETWرkQKzGe9ʨsKA"yC y2\[5 rԭ7Gk5Mzw_4sM3hxЊ'oÍ5jsub )ͪ~tR2H]R͍>̋m6=%(˿(Wrr-܅y5(ܔJ޺YunW̹븹NsqK ]/QR#"ZMDfD|43Qw|._ԡSqTZBg??O Ϥ)/E_U|i}2 9Z?¹0:x'3,whǣ?C y-A~=daJј&M?D1_PS+Oi&;a @;Dž7[ zZC"bv:jjMQk$M RԸ3uA\=wI.AwC"^.{?-\NSiˏ"b}T/}q/ o.1M}R%:-ZniʒL$SgrBW*,Mw'N\ɇ{s\j]VryG'8f`}'N<*/`U숻z CwHq18J+vԕKss4R53/&XTt1bZƟo\=%nO)h$rBi-nKĪ^ ջڜlwkYm[̑+/QrZo%TQ;TLs($2C:s.%+eoNttq۰kK7O0m_t_pZ1SsSM7"mevFZ[w -FJ*T*jФQRg BSu|]g:ɵzjqwmltL.e3sRMچkSmjkmWœިm++¦'tILk*բQ D,PB\lI[9{%Gb R6öۍmX-MaʉA931cs..G4CujQտ[9 }G-xwl)IQz j Ó"rqe&=]꾧֎c)<kӳ+0JrRR3'TnXi^xMF Bު*tIL.[h"2"nKzZe'ZV/RrNYz]8죝n]Ķܩ>^Ժ]u-7^\mZjܣ9+Rmn ߑv?oꋘ?&ƪy^N4o=3-ؔ̿*`}V݁ ƒPu8%$ ݗ]wt;\y\>='OjPIp/nJU8{϶FNMsf"ίNqƹ(+ ݮF2Km |jܴZs%zf*eȫ?]4)I۵nR&FX + [jDh(#哑9q9Eծj8noǕZf\J-l&Z˫}`ӎhyrΉn\űn]9pʌӣ"׮Wt?N4_I_~54#/my1Xr*척aS#DT >q ssΛW;3oUaJSRMDgQnt:Ql,/ ܷfRqiM Ȼ>Cob;A>ڦWقM9X~/!'MW.}Vrߔꔵ!5|iB(0-zF=}okڢE$^wW~nokY߮\6՜̌{i-AF*9)\t9IV6۸5ZUF6R$ŨQIq砳YUZ]eyv >hI櫥N )&l JulwE1GDOuFN2| }馥uC1rޫV+^gdb&W[4<^e4YW,d|htͮsUM)۸8:{3d{AѢ)~ \#J=NdƮꮓ90 |1K$v*?мS ]i$J,C,SG?/_՜pMSƯM|mG1V1$~K>CSvkuj=&) -,yLjuFHK{c駗.SOua;BrSqj-ۍZ#'Jys7[g2z/.u4+XV2VQ.ޕ)$"(%)#Z7suZ%j }BǬݕe)Jvz8zJf:hIN|svO1O#IEcۍjݽ:SdὮvu^@:o^5cs>i/VqmVm]ؔܢn6'vޑ̗J4Wn@OlKbX ;n:hgJ9ŻyǑz8f܌q&Y fN0N;[69 rbׅC2/#kE l&2~èMR.*%g=Ft.%؝e8<.e=Uv{~㻏"EˑnvDѭ͜Lu3u0:U֝$[M5<:oi+V4V9 6nXvx&_ q Qqw3W:uϔ2yb/(ɳ|5zQiJ#r|Hw#.W?4aDŲ\ugWG;Cw鐢K|xg)##=O.dF˟jMUvWĻsr.z]kPc9"]R)mkfOd*uYf١RsB Aîh=k]ʳUrrZsq`d#r$/Ը3o^&lRWȍyuW̦Y4QDUMJ65ƒ[+ygk XK_±k#y:8(TJOSQhJt2.DR}"5[) r)6V6u5k:eXZmv𭤔!푊Q[qQ}ҹLE- 8qIZG|UM4j}Mܕ[Vwm{} Naqµ"ԈM zOpKѰ?IAD3Ir0'/q1itoB5{%wkOBn-ۜduqIzYK60{+DʕܞqIt";r1mG/\/ym[6JƫR \L=S=OT@Ix[TMm{>ݾտ֒ݸӉLYIx>+"JVNzx||5rI?C{oz8۹e\R-^\A2F R+N9 vlT]"ۭ d)t֞i #E2jB@׵=#/N+!ĕhx}I!cM`ąZ*ŻɄҒ߮Y.Z}='/oۙ3IpW̮hT7cTSuz9>B}΄&h!>lӵn~j˅IvU.'v'CSZw8QK3G> ,J59ٷ+HSg䧎hJdzvwv-cvxS5[̊n~ؿ%ַX?O0\6ne 6kn9.ϯ} *h 8_QhLݣ7q +=XBҲ5?[[)+F`=4 }B,sNg==u*Nj9k_GJ)+R~GSPBȒZ:(K]heL=vKPӢwq(NrG^ثϣ?#tC?.ͼ[ۅo؞y#%ǛjVyLSw%T*s92JTM%"YkQО.q)gCͲn8cgi6j1MѾ[{9h^vƘǚםidfi.^RHmg&rׇz:}݃}xT$ضk'5s-狶,\vpbPD،=Okf.c#cdz2FK5T!&)|ntD<+OŹU i-G[EE*FDfeaf2QƤM\UG_{ǹm%\yrGy:.\4wjPGUJޕUV7Do\7Vy_13w;[?c]H\$IJ,*L]3b%L{y.JRKG2sq,B6T}(#nW|km+q5] r㪍bJ@y{byz,b踊3ϻJ,'^xd،)JVw#.Vټc''ÝպWtbRؒJz۠8!o9IۄS95E9ؔ-e9JR{dmnッ<[~n${~Њ$W?&ՐY_? #a.ߑv?oꋘ?&ơ|y^N4o=3t=~7!/M3>n8W홎2M`Qx+ z qy8%]7_~540ۦ彷]Wq CѡwkďyF5Dum_}~P(5.(X,K9vᯐ?leB9;Jhm#3{CxGE-S{;@Fz˙]=O'!ɿ]' r`:7'2bЖ>Iy,/eTy/V<.H?UYY{\^#ѣr9^7?xoRȆ7EoS_&??zϾM?(~Q-K&>"~aߨ t7Emsϛ+?;fCr)fY+>z$tIkjn_>vnrֳki-˹l= t;'EyC¥|/BLwBJdgjۛ$s S1|ɍV%JI6KvəhzIlBYɒ|0"Sy0F>eo5W)O+X˻u';v)2vVq۳kۮws?UʑBǴYO漪e2MIjPAک\b1)DDؚKm6ZWΨgȕ۶yjڳ 2ضN[C[|r@9Jfo<_eI7q.|cÊV߷:i.:$ȋ)1%%)ADZCEBxJ0MJۥy(bNsKM9k43IwNt.\%N簤I'.j|ƃ2$grBEٌ\}9:v*!n7M(ɽ]7c@XxƱԨ37īf62cTTfFK]9wntQHͮvٱI/f|j=7}\_V5U^+:uljSȃY(XI.ȱmo1甅jڎIZ2>#\*:gY|4k\8ZwSqtyA!+];бޞKծË¥e)#5ap.QK^8VdU{*ѽL\=qmjnB5>{ Ӟ`v±5 ^k&O~Oshɷ,;6nOW>u6{RqS`)S%jp\ipdEBLfTWy$GIYw~䲭J.1vSY5z.V>^+Ǎvc.I[R{QsNR3ӎfhd>y?UJ*}~[e\i5U^͛E]G_FS(Iɿ]i8:4zj~շsW,ˆsy:%O}iur]iF5~3M:Ӟ#N06)4ߧgdawIotiz:1r5YDZLHBSi;NQc44la=Y kQIT*ըl:tq2(է9VO4뒳܂~2rq'nrVZŦ[t7\oլfb/mlpc.I8콚q^1iE~䰳mi[dۧw֤ICfdFeCsg:i| 6擣׋* 96lust^{%99UNRvaMܽo ammi$em4D6DD\nA%$$#}۷/ݕr99JMն[oT޲E"KTaP+HGkŴj5TM5xƱOS-k`ۛkٝWz;{kS}F;~q|~^_|euwnE'pSupUP)V]vE+t =ZRaVdG6= *.ϼnj9:UɷbېmF_tޫgHjVS'śǕًdkkѻ_]Kv?nT>)^e=Ar1'3ԔILyD?:-^in):{7.؂\.:V }#뺾.3r̸*xbFM aȵz 6SQ:ײj[ 8nn iFMw rR"5M5I旘35f^j='j:nNW.ʭocZvZKV^ɚJ.cM1ZI7E'6rg탸5oZ=[m Z`\hbMUR١Ȗĉ):Jin!_7Dй+f̷eKҷvͨBPR(V`y6tw*MRΝcB.ڭTnc;P$8nFvm4(D(R#R-L -2:FP lxZKQc6I("Km%$E, 78uXIFA$RQI$JbInG]c[ֹ:ZM+n^')JmJMJRu{e)7jQDw~%yQl}BZujSSf۩QZ+Dzhd5o%BIc'GZ?}΍:>Ɵivז-%݌J5MqGWTVʦh݇ܟ~Օ_6 n'{3~mϬj'J11OȻn߃r Qr\3y٘+WӍ'WxEs^O3 o~[|7>]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%-(\D4h{UK&ӡn^m]Fݢ:`δvj俜F+) y[{{ 7 tu>gvrěOj'5 iRg[ͶFjGe n~qT$ci ۚ0oԹc*jL[sVWqj\ݻ&6"WoK:cnWmrv)o>66(F>=W^bf#c zzʞtپy%mՉPël e}J.\Zk4ttt>oEM=q)hJjI=ͥ(%]脼_88ф;͛gWG;Cw~˘$4=uWdĜTثNDkiQL9U*O"4XP`02,Ge-k5$h>ܼ]3vr6!9RQPIVSnM(ۓ{>;/Qͱv{3&-[rc)ܚI$n{Sv3[j00)-D3z}MRzVQпj,T[uVs0\}Sid;r(ݝJ>æʺL&c[jPK0~d(FKÝW\m]GTcF|Iׁ)I3~#oX%vҦEݑؼ5Żv2qAZTE^..M{ʐfȏ2##.R}*KʛZz^ӞN*lPťLf\G6[WVQquV]XAi)5J!,$iJ6o$tPZc;Kjx_n3`qIelV~vLy{fn匋Ѿn%;zV.n'-ұdd2߽1bZksPe3TI9)$ԩIN9Vơ\=2885N\ p)/a柛w9g_lױo8ݷ iixJV& ғRi{N^_oAŮE6Y7I$Nk$|Q)-*4Z)^¸%4Qm [I%.c-OV+C֧R#%ѨCe3i;w$G+_dy| Fzj$DI(=OA gj%v/]8qԯNIS*֩',Q%\44ZZ%D|Ǧʴ6&vֵI$%8(ԬƾS&#Z. }6z?b/|Jl{ץv&mpx4Z$”ڝ4-H%dGKfM:sKSRWeJAn]>s6应-W9'H]'uȫYvgK^\czp|My\鏩w/ËQ.)]\QiS`8uL뚛̸=J"ܻi\å'-)54Ue]:K\퓡vK xwBqrH\*֕TnzC.mT=t-H]SČ~Nu╏NÅ3f|͡G~B+Xm[Q7U{9"~jgK Zoʰ7"qJ,ekSeNGgϳ] ^.6:s}_,%eRg<5⿨z{ZPun#jRІ.6g T.!]xa c#jN$Zpl̋H WZu8WmMRýsĮ?Mco~sx TU҆Q :KDG4n42.<3/'^?6/ܠڒ^yrrÿr2\D}}B]^E~^T cɛ7϶Y[<֞[7d}2%QPqOLEQR\CIsj1?\}%tJ0e~ *sk"*)&ۓEi#{1J8Hrt|'ܝRr8)=ƔN'RVz:cf]F7bZyZUȘ4x8,#JG̒?.W9XnO]KO]%]ƻ O5Γ/3qÓj؍/r̺rƵ 5\&m6h.xoeX[=<3%< lZ"2h\Z[&jW3ejm?k&[]ųj+{N{66leu_+lj]q* 7g*knأYv= q ەdxЬZ|%GUrQ3jLŒqET]1% qkXYūYc[7Ś]QY\jko\</Lc7+'hMSUc6qXyؙ~6#ѯv.0$BQi5YyIhɍiy=KD!n3Vm[V%W-B%swa97ajۗ m+9~]fKq|Ddaˑ0A]_v޺mM5* F-BYHJ5}q>ʉ.6hyDmpD׬'-_v5;5[8K[viJ.3dR:oYHHh9I7:۽fi+wm^ [)odPѱ52CZUJicSw\&_s0uBȍh32džzQflcd^m|7GѹE!fO5]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%5|Y:SJE\U-(a_cƣUǽXXKiȞNlmۊڭڄR!**ܤMeȽ$|X5(Ź\rJ~ܮ]>'HB0cp XFr_c?f?7<ukSgov¥iG>>䙗i.+t+bOjIܶ . i^:nm}s}(3>NZ$2Qg([".>i.ƾ)B̋M8+"- >eE6DݥJnJˣt׻ 5.˅nJGwZD~!i۶a,Db3ZQ3O#KO5/֍ozuK'GbRi᝘NV_ҝcvם ZoX}F6z 7e5_e:ۓj=AB+iܔERadMBq*ԯ DwI/Gy*mĥiRKg6skY/#SN4e$-yXM YL?^ĸNNӪ{$r1JJRSLO]Aqm>V/s[~i/j+m>z}eI"Qvp]{ZԼ:{vPAG2=T͡@ڐ#u"E*>C;o$~C#_d/HBq^YRٽzIKbOm\~żjFFGdiQ(*/i*#.FF]©m=BmpQQQSP&Ҫ!T&^>:y)$ˑÐFčI Bӡ-t!bM WҦŶ'UZ=}zvn~oT/\ǒ'nr8 AJIӆz<^uߖ4eFC1i+v!3qNyߕni?4JZlmYFXFۼO0B\m[ tʄU3s"Sr(NJ;SKW72L4̏BVdf^Ҹj\]ȱ۪(ӷm?J-KEmWڽ^4<8qu%9pŹW~877ܾeVгS(յe^C]yX͹! םm4FGȋ\y'Z FX7e)|Gjt߹#gb\ŧq_([R8[qU$Z (ʻezV2V!iQ,i$JE˂٩ a(GK'O{vnBvryRd-RK4=qxZJMl_CuuIz @Rt㮽޳!|68\-l[џ84-2Pu" RJ_^OL>G1~XnBŬw6J0*Uvlږ1N G1q9IUm*'oWu][&UyYZbBZRZNfEJf"+2nF~Eû7n1xv.RUM$6 lAxSQJ&n5ܞwlEói"#>4׿Q.nEq7Oko[1wg8ZQwZYiqtm&~">Bo?w͡ni2峋NCEy Ҕ+%ZJ ʩq*fpˤl,~^Mχk1+:ݕ z&Y`KLӪУDr3[*Z :(SL&ݻ۬Vqsyԭs x|iI߽zZrg.:mp%6ԜvgmpIUt;QbS.Է) ǨKSV,*lڌ|5Jt3#NP.=+OZ~/G سIgbꥹJnl_DUM\iM!֔wVZuԺ,yV.Q>f v:݇WiaŸN5Ҕ[M7SsrvǣrMW= \8ZW-jsnڕ.ZnF2qt ً[ٻޘY۷Zm"Jxr&NAfA-݌to9s359݆mZ+N1-qS$D=17 x׵+%_ ve4ir6Z$FDڗnFtOr'7'{9C˨ꤡaYoace{Refnft RR"4%ʌm:Sj3)OdInTO>X'vxV#jܮw9Fog;5.~Y5\~18YQܹvj4+~t7S ﬕs %^۵ڴDZV69R^Y+rj$ԇoJKR5wB9C>Y:l+EǎS{ʲ{T6Wi* ^^9k/y/Cs\g*qڵgn4T8mERr|Ti+iPe;;.i\EBEJ 丬i9ɧM-ԼsGDrZ>r#R>~X9y4b棇9JwV۔%m(b[Tjvl}۩~nDԺ{Zo-YuK1vx.nWuO+jN [ٮ0%"΢CdTJK-RަH"$I(*ve &҉FzB,_Vpqp9m8werv')E;o&QE׵^d9˦j\_,ڵugZȻ̧8k+jK{wmr@3ӭ2 wFkzFVqs1؛.v'I%$[iT]D5Dl2 nk7qUxԫLS+sا3/ΖeZYK<["%-g/kRs:f3;*E ت wJ%)5&+&rw*霣i|sMҴ|;R+fm䡩.!**dӶ-6s6,]zAXMWjmnz%SJߴm2UXw7MQ%<!tKys#P,W>s;3IYwx<+i_\\\U6 u7P|xbn_k&ӓVOe䦒 VUr,-㘘"-LZeOSҠթrEvq8Kf%5%&K"#%vD/.ZYYŏ+p$nZkvއuW9㓱Z G wYIFyf)?ƎUm5ԉ/'k84{KO:rQI}XRuԪ|*lu)3qZ[mSm5R3".Xcَ5c®ࢫI*۳~wRϿQWޝ(EJrri&ۥ^ʶ齲Im|[yb;mnm֩uiܘq>E+Ikx߄3r33-5𹻖09ϖ9[Tz~mr5NsWl$oPusޛ^{Z;);sڹf\3oٹZmԉ/'k84{NO:rQIBø8Bݱ3n֤DiK4u& ofSȒܩx<˘|N0Fչ]qsp"}! QWw@t4ӭ+cO5%]'*{eM߲DRO1y*q8w++e!c߶ܪlZWّM欼 CQ̼빶lX{vib/V/ ai;x6~]+z]MWB>re-:lgk}պ!#9?%܋V-c[z!W?c7YNm/jRr[HOzԻefճ0q15Zp#rkQQ0tU-AmڵP/cȕ?0cZYj;:0ZM=D6g ?'UN+ձ[K ܖB2'xq9{|۫N0ku 7xaj;n\ 2[VznMlWiKbSk))f..)Km)&bGZ=>OR܍W:j'rM'wYz&/鶧{Sʵb"vջq[I-ՌZH._x*BagC'T(Q:$ͳQcMCKy?3g'ߝqnT);qs #ؤZ}OOI:cfnc8W~qy.;^pVl]Hԓ>^H^@7-AA܃nmL(uWܻS߿ Td95Bdh4t6*dDh!EhI[iŨ\L.&Nc ܮf^;$R)\rip9I|ٺ?#R.ZDZ;/]nݻqs\QE9M&Bd ]N mN*D>tgbK>+ˏ.!23]BȔR1ɝ^j'k2ƮqBQq[$di]icV/e`޵B.FIIJqbi>Ӥ|p; 6${)RU>_e}^dzdfzi %ekRVUS?6'hׂ)5.\+qUgzE2C˷ecŏ^֔ibk shesFWJ#~> Wk~ݨ}ڶ>ơǚ)׽ZƉo~B-ڼrvoE:Ʃ3ۣK7+Y`WirS):{>ڛ}:wԨ(J_";6R%[u&ƫdZ_\'np| RJwNeTW,=rrbnkڄ[M3ܴz)3- R.?:okۼ0TU'w{6&w7j1z3ON'fGoO?)S_bQ_¿R(^ԴԴG.EtMڇ&RUiW uQjU> Kiu1d<ѥIQ'RQ1:O/lŗᏩiʂv&Jc{D5 Tt)1.n[n۶X}RjqnOʽ(~[Ns{ސ⛌uO,kgo֢dRNQȄ .'6W!׌P朼tdZjFGE"]K@'i۪N;sI[{SOzk>`rRR+!σj8&TjlvA̷Q?HyjyLHNտJMjܶT۽lG?SnKN%<‘ nq[N0Sq[Ta(&t(|HGO~gvkݻTR4&Z$#ViOY1r$6YF?e4U/Mvxų:zbU^gQQ+NW_'4jfz^c'#`rvrڡ(IJ/J ݦ6 ]-CW |_{v*_q3^DZ}Ic6Uڌ8p7{crZq5ki`)mU6|-Z5^iEz3P=:Cu7DF'k%}<C-޹ֲ̱#\,(f88%X-N(ck0VLR~} G"-8ӏ/ϰKq?(#nrVTmZ;zióM4 m |UT'C^_1X.gXM{%ʤd 4\ovN":"y-,T)fLQgۢr=/CƹǨJVr[a+!rT|%Y\ٱzsS>jͱ.oOc6f$q% ǒGo;n[];ߎjrk{~\VۓNIGn:iqxo |~t5)Rxעri{Vi&NUOl_ѮMfsޕkЄay.0P{7N((BaIP$ K"U6Gl ݙqJRu+qN$ m#*p<|{:>-Ev=86N*MM긭U*uѾ?/^o7;'u,h4݌xښRM:5.(/ \իU.{F^rmF-Jɷ.>Q"[4xT^OZ~mK}T0ݛ^SAo9u?lX(' qj%=X}"^e4wˠ|rܫ 6I\Ķ;Ӻw!'ڍWg{ i U_9Avhۣƾ+:vs/MK[ɭīe{`Zgb}r[i'GE2J7Nez579wRq+Un ]J.cJ4M:h箽Wxxm^ pc\wcN%'My $$| :$Fqɏ¾^қP9J6Wxvu}ݵP>Z'FFdg"-; [¢cmWkÎT8nG%ݣ7*\խCLRYZͤiD&J#'ehbSyXK|y*ӞpS̍R`[pTr/Eg)K+92{_ n3zwz'oŸۤ+sOj J:`T>Cf*lwd\fYOP"R E֢̔L4ɥ :;.b(B02rJ蠟9>V'9M%)IqnhP<%,r'P/vNSwr#w"ݨaqc(|{kd=^0jTMR2ULNz|.<|^PfY22##!,K~E BEJۜ&jRNsHަޛg\r,v؜.jK3)[EJ2ii{KEiHP^&]Gn8x=K}Wx/KI9-ϵwQ%spܾ[^R}S3$qvq8M[ ozKxcqmJ/ӿ{_}7&ݨ\f6ZSyQz& 7ۉ[8~UNn|nkiTB+4RI8'Nc%tn{!]Ȋo.nEmʱn𵵥J A+wy#+ikǒڂ;՛s85'KmE:Ђu""Iģ5p=БbTY-ͽڔ詻ngL2Q}$de# fs^o{DUUsfwӶ;s1T,ǤtޒQ\෼J=.tKU,7čJ5 N$y3kdSMQU~mO[03 $zAڟsF5^뜞"Կ QHmrR"ӳηer+ҔZ]hE-6Jmt'ޒ=O[sQj)6K}?e4v_KfZheޓ=BV[bY}lݒTTЬ{ȫvO_qpRApVŗ 6ju=*BR)g "O1yhb=tqJ gtm\b3RY+JQ^Ō֍\յ\>+uSi{=x ^w;uӘ#ĸzLn*$anok߷CBӷ}5Yqvdž<( "_OWit5:EZj2 B ρ1̊fi[n!HQF82q1牙nqnEpT(2RMoM4ϳOu ':֧_Xjsg jP^(ڙ{2%E͖j^}ZU[Q$'U) <܂%!s"m R'G5M0<+zM6qYm$ڕ$3ǧH]?o2N<8F1̻r_my[Rf59NjpzBnl7*{.QP 3N&^BLJPjAHCK2Q}$#~YMq8 k(MFMU)8MEqTy+Tʞ-ar5yܕOXw!e;q-Jqܶ䓊Y:LC UE{/t>r"lI9)3KJjϤA 6SEE$d߇3KG*En|P\ԭTn6I-ƍKTj<1H_zwGr19wF N8ݝ+a9ɫM6mhePi%mmD! """"""*1bRKrD"vnrM۫mmĽm]ӡiG~e"˩ lhRTMk^MX["Jݱk7_ޕ*DqĒ&flՒ}`W}~SմZ{ĕ~wm*/{{ѹ_-0ط#P]xlڱ~Tn5wi*lڪ (JxioϏbqKYR|!|KN53 OS222$jzww%i}>N)E+rۥ7c$Ofl/LNث\6H9: FY󡈾I)fB֔JI_ ֣^: 9mY{66㒢7Uj]:.-os[R&gMF3˸#໹kmjq^8W"PΦURjʄWa˧T!͋ lW48JB2ko+ /Nw QwQzQ ے%$ޓ7^YL|r7!v%Trܥ &|M8~ybrn[RV gSn{{*#2#ԽᢏӴHak" ӌcwҜw&RJ07ױ>Ļ =^ BɆ)v32.M1=#6%̠tҤnzqMwԣ~s*%-j|_m*.Yx9Sz=)qE4 3pk+,`=kNRڥ=B=nŔNAx)Q$ԩȧ4z3t#Z2lҮYn$S%y- JzGpu|LBV7ZW#;Wwipܷ%(6jFG5#{$D"uۭ~]֫SrD܃fҎӾ+Tu>-ZTQ& N|$沸ii>eRWݳu'[O̻j8JۻEѩ[]vni= ڒ,[_%kC7I3Nv$4ɎЈeٸoUu:[}Do5|zNq=Tre%ɧ6&~DȍF]ƞG5q m]/w/ \ʲr8=oʔe9U(W"|S]uZd#?Se[W"ֿh][-7Nu:T=)R}.;ml*5Dlf $fF(̏T hiIUU4Szɕ t(%_|2 ~6eM;TƗK[f&]LK^CE2[ȏBOd;Mi|cx,^6;sیGpQ\NuJIFTJ~đArh* B"$H쉩eXPRj?sl"ԥ)su]xpԴY%VESH"ЋJǰ K&5^Ukzׄ8kEgS2h&Se\ Yl]WҶp-ZUvi7QS:4byqOo+[̺腋[6-_Fo.6[7$p&^ _GZԸߍkc.qqoI[9m߸YxOZЦ1uoiSH)P9Uʄjcq= S>֙NeR><;+ڌk%_qT].srNO?s[=vH[]RZHRMtᩗVؾ:/~u)ԍdg%=edVrISb{6vSu=(ܥ)mTv/J}̇8 S3ad:^hBSf؉OɔLhI_1d8,L><_A0y3rXq"'(۱;mFNII.v5_(^q~X>y{3צ I*Vܛv/jW' T'NR'j%ꔩ:mJ3SB}΋!-H-RJBТQoedi9tjENenPpke.%4]#{:>mkEɱdYWl\\\'nRM4&U>?Ќˉk÷!𴪛]]5}UqG~ݏI"O~s6(Ļ)qO~h}uԕd}Q~G,oE!&G&/]_H-O=o{k\̭bkv.Ô܈+;arZx)m?M\3lU$mk-CFXjTv6u' g:Vn_*qk:VC A%'4JV%EY)#BғO4<e׿jQQ]yUr4=wm[K1r׵%Iũ-O}|kC;/VcݩWZ)EHdžTru]8hgĵ-;=>U_ InvTm_jBM+QiF"9*{DI/iuo(=TzϖmPQl_v4z>T*ȴ>YF;ε\t]EH4ꌇ[VrLzef 2T^V>g2~kg5~Nק;{~Z~W}&ŒBӿS2$J?~(Yœ"˲ߩ\O]: J׉ښT{mmIѩn3˧)4LdFZ/zUG>U> n 5& ϴ-KJi2o]uKljvK3$bԔҚV旧iY5.ίfi96v7!v))FJM4{jG~Jt/lUE%pTAFe4qQk\ve۽/u/Im+W')v{\-E|Pms7߮DZRr۞/mu*1ՙaB܆ -xg3#6ۥtRogʌU)׎]ZҞNnŞr}F1Nnޞ;cZ{N}ۿMiuxʉ*3qi'9KHQ$WJxXyرŔe~[v5~/jN9Q4o6rJv FrdxM*iRjMzUinHdн7ᾞS=S'7 } ̽zt7K|_g J=Lq+/Bw_\ۧx\HJUPzQ<hqF[V0x==CsU7q|^ {)Iq38$_A(VgcKu06Ƅ"%i~_ˉk QCܣB8Ku/񋇵u([w}$F|8TՠI.E !;RJ^}MɒD_q2];Ɖ{5}*n7nEInO{Mwv}&q+v [V}Ĝ@%>#dXQ$f;iep.GquixVt x6bj͵mlKقQ[T]zs/&yەnM'W}!Fp_d^Tu N{ɻ'l{խ2.sTu{W^H&;1s)Pӛ6>$mě;Łnj= fLT)>׸+qReɴ[UR\L*P/!$Ӊ3Q 'K=m~6XqW3^W+ųO_[F$rR*u"T%@O +%# ]˽!aܽz{ͷvQh쩎]hGތ5ɇ*DzJDRNLi 4:{~2FmXY-zzĽ^f=]uū{/+&c:Ma{ĝDp2m܍kHș/(--m_vݮK(V{R}.k&yƴ7i^4@3f sK3^Ř˸B=]?gt5KbZB<e;kQLpxuWC}n 5ҴepB##~q= `x]KWF {GfŲ}?G.I9pjWkU]>={7q{kO/^I3==f1ɏ%nnʫ/Zu_yXN<57ۍ'vy/"8넭M2eԷ&Y,в33%IkjMr7xf nmQkX4踼>a-GcIeތw&U=-:qnW)z¥j :WqSZvԒ#j"KrIU)%qrmRoDGQ~SYRsu*V)  ,/x)MFD6O#]z 96[Ui(JRfw'y$GeUީkdMF-ݻ98F2d[o{Rn0n-xsV6Dh|Eb2E:KCOӪv4SJCr"J!!m,hRLD| ZYFm/X~ΧfrN&4Ƒ=Z9Mh.Mܵw/BdrܥniŪ8ɧ|y%œ[M=_tj?F!z5\evM:\ ~F-sg钬OWq“iiȍ<Gi%%n2rqͻllƑ)okw7}\Uk-:&fj솘XerV9yZuʼşdFC=rmo%~ZN78X(N)_7.Εn1MpJ}62jjJdI";R5&iLԸc:jmqiQj$ujp\{;v5B񥍪Xn Ą4qOERjzN(Ga٠䌡)p*v(J7#ZۻZ8O W uONb+^Qipv9GvֽƼϯrYƖKGJQDNPhRJjᡧC"21"9ѓS1;R_O7/WGz)8fE%F2ukmvSov/iZ&/]~KmI[:^~ͤ\kMi稜\ywJt3W7 8Ʒ~ݥeFgѼw"8VVSج\뻆}ݭ/J6Q)d|)zU3>k\L=;ow֯gN3pKѫ|wmkZ$z^2R:E)f>ς нd|#׆?\ǔpV{;\$ƵE%-ͪm0S6[n< kE[}mvE4DDZ^$OZ0*$~XUv҅B@^?]so#%ojw;Y#SxxueBگy v^i-)s)zV jC{7Gt.w3v,ygg8s]aE_,*E tY5k٨h=o"m泏:\6w噓aiL׎n^c\75AGkЯ0Lf46َ`egZ˓p/k;̛]kq!ݸzpԭG"}R9Ve>ˏHUjJ-&7nrnwG*Xv\˱/vN}O)ʼn&CV͍f̵]r\PMB-6Du-#RͰtRN^)mT _}nSȕC*_xBuTkJW[`ɩ`ejvsngP ڻ.-WUtܑqԹQj)t;vN&RNũT+8%IXӃ5fK՛-d9 ]CƑm|nZ-6=Hz,*aEm W3VzRšdY~Xf׀Xx"]s;)5u*ُHB BRGS6bݶؿ 9j[1*jױga7oX CUI%0v#~\-O-Ꙛuɷ쏪&5mY٦M`LJ2qK~HZbr =N'YobI. (^ ׾{_ ?OJ`S`3BN[}5w6:ǵ/iSlt=4F*d&T4y/#. ɵim5Uֲf 眕6Y7 fơ=3dϕq뚩$qTM-%r!$@A? ޾V0c~{[{;򥧅a~ڵ»&ڄv1ek=wb MLkNAԬw-x>~/r=e73VeVN)K%Sښe"+3uXuچrn ֺVzscJ峻m}vb㶓n\YbIUBT%*,0nov=;z꣓S/nSXSpl##k9mXGrZv^Gde!ŷRԠzQyjC]`gToPov{j~KRBMY}i[߶9KL2ԉO0K#m>wB[ٍ+n[[b٦DX ݲpo] [\m5qdT()mo4Oy9Ie b][wղmM~vmi۱~t \}$яimRk(L c Cvk7r9_r1 ;zv|F@KyZ[&jEji/"6$69ml#e]9s\{ScL}Ȣؿ0q/nZ*t,CLoD߉Njǚy=Pgmu6^]l-["çUʖMlʍp-"qmU>۷uFOJ%Ǔkx 'g=睋k[3u,{³WɘݪF]ՍeFX"Oy\,cچ=w/gn Ļ]#2? vqy-gXnR.^}ݺFs{ŝG]}e|#0mjx"ƬWكm?rgU^xVB":Dt>@LRbun~ݭ,w+v⪕;\U(RYa61>#Jm˞Μ9g9XKaG='u8gf}'qy#ɉw J]We.ʲ-<+&q%s?2dњztҼn`cΤmmqMdz O[-ߩӲ&;[tmܝVnr">{x<8U+p:Ig]zjGkt,uzf}dؠoJaکqEq -(:d<պ=eKy[˗^%ZXkX[C2߱\ITTLGzANM￵i]K>UsOGDDD.ZF6* ҃V Zhz{'xp^`wo8r0h ZmJ5"jb[l=yUu7-;7IT%:jFjߖm0tzU'K)څNۧYJ)4IQ}^KWm7kSP>q;ނ#)'n7&׊r?óM{IwR\j2Qn[v pe#/tAF\ϵ225q֒om6z})6҅*oqDsMf CNIN=T S2t,_ѧ}kveMF0J\Rnnݙܹy[rUc-j{yGtkQ%s]5qB.Nw.JN1LvR Ui5J ZESQԙr):MJ+g}χ!2;q([jAud][ljVK3$ײSJI=/|&tl'*n۽f.frܥ jQO8>&Z];.|7T/C}$ڋUmP2Reҭ8hFF\L 3~e v\۫]ݝNmrnB%*]Z«hKc=BTLG :V74$=Ǘy+EX'4tn(I:Ѝ;Df8c,k1%dJ6.j6ź{N~l6&*fœI7 WAlGOu-ҢH,,(ǔe뿋쩨kM܍ZſgRvQ' 9)?n|er˭|I|-fGK.rΛp8XV1%K6mvG+tc+qE&ǸC_Nm:l=_/m5^[dߌڇ.c<%:)tQ$Ow~-aY;UJ>=F)2[nk؆?훐M=l6[4(O.]2#-H^n#->&mp5~Fӛ+|| S,xag%qkEUzUgæBhߕP(7]kFnq?֖CpruZ6*rEڊtS|*tI*E}7R<,nUU֫^I7Q*mSly%rdȓd8hE<9oHhMfNSRj[i7D[Rj݊+kდq{"$$H?p\̅S?㭻;t~R߁)^/>Qj`yt[w ԛ;²~+ߔ_ YW~|o]?x^ᯛ `ʼn;g)T@vWn]>&4lp+$D̢1l|ȨF%-}.9[}w~ ԠLM9hСablfe&QoW!s?wjLK?s7yO>(=C~_nyǜu?v3vyo oI@qV-jeES^[9WoSܝh"l2C1a͔CiJ@3:Pճw=/7ovuk+\V;lDgն<[A+rX~d;m!_s8ݖ׷;;.0llUC+?i#_crʙ1~C.\–q ul8Hܶ2m`ܻM3Tov|Bs rɵ"oLS- DКw=Tv@f'6|YlD͓Y%׵-#Ѯo%:&!3o%\J<02;K87>^vgƓ# ;ݝmz^Y6=PS39U%~ &f# }o!muH;ʲŇ˷yvP+&.7e[3'vR4Yj̗IZ`e˽3o[WU{ m[sUbۋZǾۆl6~9'V*.\S2<Sd*zY[aŶ`]C$n.v^Ʌ dng>ەZ,Mmϑ :n6nϦezWqUJ4! ۇ4R! =>>Fn|Q[{pRO17ƕ~._I''00k=b՛o}Osðc2'o\3}ݭQ^2 . R1yKȣtAݿ-uܾw!`?1Whn|gzUo[ECWwjUIן)^h#1ɭ!/Z np;o;ΗŻkXs."6E`Z1 עӐ9Kl8qd q} 2Stt;#j>;խabONŗ=fwP1j)l6J̶|gV2`y/0E˛6+ԫ1? 6}KW c\KoKͨ2ۅFw–s*TԞLיuDx .kCzWXhy۶gLu|%TnupǺl-S* PRaLnT+c+*xl.v!.U=|; !_L̎뱚U=4hm:ٯ"y)$:>%(n}X'p[ȴ ^˒4kƓmzDx \ 'NqamP7nyN݅=j7%McSڵj%STy qXymvCg{w/w=wSW5r̹u erծˊsOm=DhEҚRb#n)QOxtվQwe]I}wCa'"[ۂ-z}2UuKP$㜉ԧ:mc<Ý>RoL?wu|%ҷ&K y_!y9 ??:tq3(UU-lkS'ɸ@jdzQˬR] EVPW1DJq2n:,c|ǻ̑;y{X,ۂ.u.b˕u.tKBjQ"[S園S`ٮdNبeJ&9Ơ ~0a(Vm٘L+Jr*vڑE( x0+tp˕ n';wm-ޜMOxX>{#2%jgb2M[`K*\5@8l'e=0u+w ֘鳾{y܀:R*Ya]"Ӧ%ktynlۣ65,3gU}{GYrb;ge'TKwǘ.,rpܚV]Tr,!dp /ԺU,xՉ>s׽~W5oTh yx?xrrx?)?ilbT׬,z$Ԏ.UH٠\U1pU:]JwSrGZq8àd驐,N67QYBӢD㏙W!Q25ϸo9ms-7-%3CihO.J鯽-;MZM8ku-7k9S$8]q2E(}bۏI[DKOK}3KUB^u %Y,u.-&f#]'܆o$x`Yu,dzwM;#oKxn;\[d7}Rb+*Y䛂ZuBӱl{j0O̓}LhK;[aֶaGL{Cb#S.T[>߃F]NK"u^LUʐ_ykW?!GRj29͖qa'0[npcDvV)qz9R)PۨM^aJx W] r>];eN3vxdmĘ(5W2K1䪖weF{mE/QP6\u54x5[hۮ-Nk”i[lUgL]J}5 S:EhiUrgHl!ŒJ$pe=q^b͵Q' ?6|R\,JA ڵ"TDꈭ:ymg`B5t%M] <N_zv2_Ortٵ/i/ReӮ*7[qүqEG* m"[I:6e^p"I$jԴęh!m)]GZkcjS!{e^z}+Cѥ9;R|/ֱeiUԏCNu2Zhcٗg$ݭwvr P8*7/Lk~I'Km1+MW%Bk|oOm>-#qj*|Dbѱkn|n{v#jĮqNpMIUm(7Liz;{ҜݞڝVƚVϬ+sO!OstGvxӉ']uӎ4g_ 1^-8ۦ k!)Ύ5O;YSB#2Zzχ;<.ֵOtge~.(RC#wFZeGZٸ6FFJ4e2ˇpJT$[wgV)q6muDGJ56q\I!̗ y/I~RtJ9kJ]Iy*'FN0s.[l!fw'y(7$œ WƫgyΙdMEU JQJv̋vmrۖ.jWR_M֨djYgSj0^\y'EoECjm$ IƩK>Z28J2TiJ2N#}.s cArl嫶nB.FIJ.)۔\ZiM>/hLĸ=C1s[?YMqp|94- 鮝𦔽/k^#NT(Y LS$6˩}{;5 )B۷W$qpN)qqoot}ZDVә;7TiK|6f3h$dԄ}fqݡ>Nb򗉉+ͶO]>ߡ_VtYf79ڰիF sq~prս|QM)g%l0ocJȨHz V;Bb/kLAcfPJ,ԭ{ƍgpjNR6VSI*$!yV足jᇑ.](EܣqM\qJ2eZT).<9UB/(B0j)mtKEj#׿fDI-=rZړj|'Nڤ]k*i$5qt"ݙPM6E4ke^Z8ۏhz$Q(R Ay2zfRñnpnkbkI:=j &ΝșW?׵d{+ύM'??XqeeĽ.[o=UxFS=ӷdZwenՄ]_X=ĭVa* pKs0ބۍfJ3 gz̚i|wnxtjc¼5${(1fXQ65ȼb̶Zkn>%FQMJXӡ{TZEVNᖣimT/37cNJUPnP҂ZOE~"-Rc4^b- FEͧtf5[)S!OZIښݲ͑;tvܡ+N)AR=hCNn;wL16-:特7M$=Tҕ-.R[HٷnXk sn[ҞD-0WS9p9:-Ϸ-jѬNu{ҹfv)[Ľvwfg(ٷfe+0mYj8Q1\ݧg]Eǎvڿc!4#j5̋C2"}BRriFp7=ô\TZ:\BLfj#I22װ<;صZl j 6:l"6]۸ K'6RTѯ^ئOԓV\?$x7s#r:Oh{ց=MmuHԷd{pN /܅:UE#Yy+(SgQ(Щ)RHzw>^Ѿݻ>mK&^ '$Jۻ&w%F|xfz%˳ L~3N?Cy9 v w/{ƿ kz3x> sXv}vP"@WyC z`'톽Dw%-tt yVY\wmuPYQA0iG-2JP,6/gˢ]u.-n!Zw.N7Q]Df}Q0({a\@=i_X7gFǘ8^⻲}G MZ1)WEfO12G+=-B@z\`||w6ċj߬m}UwRox֢I &c~XGP6Qndpvܻul'V7^FJt^{b^B(L~sѣ6@߿^xqU!ڙ5|Vpvef-uӥ^3  FSDɯKD%0r}FF穛r7 +o"V8tv̖NQU!5uFd"bCr^bJ=֤fM#ʳԷP0O-9xRBm\=`r-:;~3Tl(nXtXi%2Vٛ#vwqƴ`L@"H‹qW.j,JM5B[)WܺUeZFqc'V˷1W7V̾-MHФwn8N;HPSdݷC7&2j.W\τGŎ'Vb]c.x+Rx1%C2T{myg[qU|+m:M:շ8҉yWd)ՋWS%%:iqlʹmGwݹ WnNŤѩ5(9hTٵDdGUi-)vSs2 2{OnT$Xck n:¶(lASLeȔBjμPpTb2~N2~%^k[ܗ[Jzs0ӓHBKq[}JَA-$dFQgjxxFv4r/x*Rm% `4J(&iv7SkԲmSH1YWmx 8n.k']:Z˭_W >ڃXЩ. jTq%Aā[E}amc]D:rmHRiu:uӚӢ\p(5-q%e)(۬ҖȽIf<߽pr&ݫVfY91q2ĭEQgYbTGQ&,yL+N$[q*RVۉQ=FuTܻ>f>f㋳8N6$܌n)9&»iˤsX,݅܍ȩv+sRTpO}d?Wn/Inpȸ%O]StQO|v5\}7Zwb.AIVK^:wb{[uݯcytO߶S<{8KSRׁH̏N7ۚ[xkwYy_'ZӵF+>쌛ZUĦreE9F[24De{}@:ExWs-\ǻ7K-\JNvEk%:s˙#κ].oͳ;լ7wB6nwu:$L; DkI#Wz.:Xp(˅v$Sq,wn\qIN-e<5Oe+vuYTpcojUI_ާP8 O 7&VL8z$_B-H-[uh]T{|8=qVRN-:Ij:7PUtXϷmy鉿:RIM~33ӸS2#׳GdŲ5+/Bx{(WzȨ5Y㞎#|˖+ ط.|e<o/rߔX>7s}VE.OVti׽ .5nNJO"95{#q}Ay9do]R"M6z\tnNS-D!@3N_jicWsy*5uٮRcWv/.,j}=S)j5C^> Ie =gu9ӛqjtz]۪TMoߧI!Ǧ¶m:,"[L!{qAv-o 3{"KʼnrIkfٶj2ƙ؄S`7` k6jzޞ?e5G&6uʷ2%ԒRKE*G\Npom F/V |C0.q_eenƣ<5Oh'67ɪn[SĽ{ڔjǘzs;~׌(ۂ`ܢ1ƣ` _l9Va6%UQWh~P~\F^ZHR@:ۧCJ{ôGeBh;~ۧnU J\O+n2 RҠ)ng}Kh{5+S×ܛ.1ZjG)iRȤIN 4%{oΜ/eO[Nffd ĹK?nnԼMqX'܌nZvq<ķbFnͪaQ`5 s,M_լ?-@_{w{ӺձJ}GF[%v\5[ŒGkOw/ΜM9rjË%2+rd~+󲕛C9U۳r[aJǭm|˒LAʨSCq[XMۺoubfp:t+ΤĻo ][ zt-*67kvS7D·MMCQXm;)܎n_h%]4ܙnRk!]ڵsDUF"`R, &#R_*[z*ZqFXɻ]7|۵w+'pFDەs=r./ᐚm3Hשy yD"jHCr':sA65نѮ^o1V/ f;nFr3VM)e*- s D'H݅fӧ\*޷[k<7u<-]֍Q8R h|p=WlW3s%Q %3l}@U-K6f-NϿu|ڴmWN׮[׸F*mW\%r! C78:޳vBG7ŵ.JթԚ2x)ST!řn~9 W:Wpܢ件{xf8ٳwKE ҰWxVB\qBZ 2wMb[lGSnyԚ~z9ZmያvoN2Afnݽjf>)j3 !;gOYʹK" Wftڎ+׭b*2ϻK>ۢӱeyԪXISUm[z+ugX%0lϏnvg!;t{BqPj>PyvR7Cj]O%+ݲ :qiMj6W}3vC/R=4Som]ŗ=ю, TF6U_-\6MyskwMr&Q\wjKܩyMϣUj0*}RZܷSdY3>Zjqj6TgzpA/M`/Cmл,޻feE[/+uk^Vs1W$G(JsW2ٰu*߻q*Y޵.Wi:ur5T),=0uRmho.twܖiYwrWHntvEj8qhf`Ͻpf(R&>Ki%I7$QӖm-2 ~yߗQ-앑/ x[k8nw.c㩵k}]FkbJl:{.(˩n0Hqvαp7 귎.Gupx[N`Yq'+ruU7[ү+>!xrȫoSo]OC# d^Q]\>!ƛGw^Mx"-+%vdX-:M2UR%d>%l ioSu6lsj7D P>XxHz Ukà(n^Q V>5cVtWj SEiJdznyej[lE' 3kuٌNn4JW)gB {4 j6&]' m-(ZMEz8cz>WZ6#7+[,MR-Z!4ܓtCyE|umj1ƽvƷV\;%>Q :#Le(iVz5 4ũۤUWxX ^(ҔsլB2w-V ^R+; ˂M\z+Uwr+RWY⺧~ Q*JcYSNSλUd8in=v K낫k\IRרSUaCFmϿ5̗P|u ZTԕ}>oYѲ1sfP+sQkX8Gb~6r,s>^\,mGL+7[n-E\.Fqḕcl*Jmjb5 ,m]c}NXfeVlǸJ5eˡ$4%g~N p4Y*WwW٧<8v#;qԩTut,m"#Y D\5V`\\Lȋ];LȇiS6ϝZ l>LruR\v=ǘϔDg=ԈdFZ+M{=|,[;0>RiSi4,S5}yxw&(E7&fݙ4UՕ! ~'Id)]ǽu2K-fޭ \08Vڅ쓬=Vy^^ IhyKR-B#Ըr=]mܻӾ'*Umkoy rTqT_i,/8Q^<ݤ|4ԻO(܄"'5N~#m.(Ҿ2i6Uev&I*<}҄$eNtÛzyWJubW^iBW.܅Wڮg]irO6Ve90sgv.+sV޿aޔ[p?3q*FutUo*eL\KM'EG*ZcAFfG5J 5jj=MJ3OK:k˝'NMB7m3uFҕ\-Ywg%PRqMIyZGY9|μvn߻5cWݷa^+X֥vnݘ\v7m>Fgzv"-;Ew֝}1|RjN𿊀7g#֟*GQQ|#/bo]p$>_Un9гUbn9׃ErQBU-^vDmVh'<R[fdHT]*~}3j;nvjc7s-rӳ Y8[n[1pJx kX[Jk9Mn!_Nю6x:iZ˦U |߉^Ԛ݃hYxk &U^bwKk.[jE+P(˞=9j@snCv7%c_7=xǁ<l {t'酚+1F‹l׭:ݻILruǶkL-L(K0L1&>wXB(pm;1fpnlp֓%Skidkt(U +xulo'/ڕeN r=^pZZ:Pnj8Hf"48ijY[ N[yZٻ+=  ø:3 ?^ܷ^Sr#YK[UF?CuhC b]GM')mڏsNrܗI]ljq6VB. W,UK"YX5{c >Iqā> T:n!,5l2VzCl|+I[*SrjnS6٨y+x,@>П.g+!rn9>N|W>OZT_ut Y""v7|sfި;Pclm EùN,{'fNT%U&LfH8~1v>Il}统u6P˗c(WV~H^bMU.o*oOF0N:_:6Smr_.b+|ݶYY غF,mwjv>f*>QM뭱Sd:`N{l/⎱;n-z~"Gze퇎J5S KG9!Gn;N1 ݎ h6m|S?ɂ5'WOÞ 7|7^ao @mxGmi^jϽ>01Mf0լD3-2T. VXR"ɥV Kl J O7|u?bvа;6.eߓ|[1bmRr,eRz`z 6܎-ͨku͹Fː dPhYgZUj}nvX;z=gVեTv_J }\1n7w2J?ޘγc\E 1Aޑzq;\r]]\Y&[nsNei\uURje*Qk2CSl*xJz-xٶlm+|UjUؓ`Ladqiĩ!Gd\W~fz;Tn*PdRM&T4`չSWq5k훶(N"Ӎ% V]֦wb.nUO!u*J&Oӕ2e|Z=eV쫚΅g#+/RW:طnbi*Wyo)p{:ETKؚR(RY+r웓r(IF) VmȵNB:h Q1ғ|u8E]{,'$-TR[j49l*3"I鯴zhd>Q+\BkNF=.$ZR4Nwհ(IpNi.(Gi33#33e$FXK*NdWrud[r{xnk$v2ıh+J1TQ[#JQl[tRO]LHKٮ NӍnF񨔤֞Em'MILB"ԋ%dBŋ+p̿_17jzT~4pc Vo\ƹb9Rq-'1j;8ܗ)hE%DZKS<璸Bu*%*Yw5ڻ9ۣ^z4U; Ñk\U(o~G?VUĎ:?P?_F_Kߤ~ᓾI |pr.Ok\SklRhҪz{­P .}SktZ7UQ4ڌIM8̈eaӊJZ%FFZu,KZvln廐SNFIVtuNi?CM5]+Ph,{jN JSR$IS^tSUVrORYu.9WyP6 [Kiu m!X|]Y79ӄ)\ģ)pbڳr%*&ꑶ_-H*dzk)1 V3')UAϹٶWRxe'պn۫h7AR9 EAJeGLms!%D| A 5]/Q3eb̄vnVn%za\m kZnv([emqrIҕij|""><hjJשvvǕ|Pޟs}V~2&Z?+2N&Z4w@)4iSڪ_>/JN9Hiۏuf8'It[ȲR.hZ$ȋ_Y ~U<UUO*6b)Ovzڜj\R̋.$FsQuҊj^נ䈈y<zZIuP[}Qm=C?zN(Exqu/kn S-FzKZzOסӽjJ\)F3b!r5ٝ|;6 o=-3*λ]αb\abqRi-w޵⦪~b8Kpo)Z=>)ғ"5/GTZLE-輵f7ݘ۹~+&+w/7GFI:l33fg.N~۲\2|*cnermnnM+Fq"ѪIz%j =YW8@~gc/~?N'?)«qȸs➟n=k" X“m֮VreMh2[uݖ] *FܖN)MȐ`f0 g,C9̑o;ddudJ=In13:ݒvvdMUEJLp^,6t-@͐9'{7m{-3,>hnF;ѰM)->>+Ěz!R* :`e--m7nB\u{b U>[8֪]6^ߤLʦ\DFNo$$dͶlgno8OrsQ\l̯hRo8tuNo+ CTxu!2[>ctFpeޓƻֶR"3QrQuOѳgwQr;S~)6HhZw/GgVTmUf_yt7%$];zLWF̰xy2Ʉu!MCmš_0[W6jf#a-KLi+3Q7c^qg%s<1aYIQeZf+}>;S6L0]Yu_h9߻<ƅpmiM$AVvŚ,*#t2.8Y)-Zhshü97/#Oro"u^/uFgWɺ,p:6a,^x%$Yve^3PƗMnTP&yS}OJ '덫MH^:rXԴJۋ/rI;S*,+yz1hv)Qw^ڍJ2oL׊q(\fDj:^T%vOadɂnS}ZO)N*λdaȜkG_PIEO}нa(^iQX᯦-7^)%g'SJx(.S9zVɴZ{E ))ۅi/s7 VIV-|sj0*UBTHIqRf>FP$KqN0 R̻8j\GcC}IUz\i 6F)Q{Gҧ3qSzKj-Az VЛS-zy:8*mNk|D鿓ND2u+0Yŝ7kqm·?8Ib]u>˗^_>(]vӋzv+ݩ){vZrJ2RQ몋C$z [,pp,8mڊbR]Il .f~d/ݓs㓓mͶ{mgjQwn=Oic9ܚm4Q/6ݨ[TƧ?nԶoytf{@AzT{e{[O'ZRZt~AGD?s3􌿂ՉIw'|~U\ w~di:Kޱ)U/sU%njѩ&GSP^ǝd)..!^U` 1wX[aԇSxoFV6_扐)T 2Mfd=ۖͭiZ7KK Bi9%7@<3<ճԻU,},a}FRqɛr i@ONJvK KLN M, ʖv0n-]DwlI-X6ܶ$Jʴh5O+mOI+Ra瞠\ MG7BفjYo1#͖0V`Ѱ2M?c8>-Crt*JkIGS:e#hPKx[鱼>{5m;wcն&>j-M֥^َ) 6yȜl_w{-ō̱r> U=]iw3)r*]:K]6BdCTZ|>gf}LW}[$'Y5 &c -j.z6R 67MԷFMnÌwI7w5E}o޽+K ֵy4܌ȥW"COyR[q5Ӱ͙f[v"_#q{MV6܍3"u9BK(41ӯqˇc${ߝCi6I(OmθzҜ5k^:>Jzw.>qV8{vU[ڶEm|DžBz].KHjI]x;Mɗ{m,qZXr忇2u^RO2Z}ZێS[2Jen!*NDcrBUً4<ǼMҲs1Zw57c3&ĖڻzmP*FuJG1-dN:|OU}ҵgi2t~F^^Z.VxjvŧnNNh<:]^~NN+ge^g.SԔGFe߯'[vn'(ScJ]kܗ7eJOlRrfziݮq̋S"\*U<*W]k$FջV}? 7g#֟*GQQ|#/bo]p$>_Un9;l S VvQU%OLU{οmU6bZ1MTx%!֙Q7, J=!3 ;Q,ڌ;6ͱ݅q^&ߔ·n #WbwӖX.HtG)N&d̵zpI,n cu ޖUj+VXUp[w]N o.J6Z8Ts&utxln;~HPHS/xw`G\ʡ¿rj Z^vt"[L:SD\h0sUwR,}[x^X,R2Vn< ]2YDr[SRKs8tXb̷G?Ps Tv 3be,zVz D[/I.KOEQrm'$7|[J>r S`5յwT#\w1FTz\Ԛ &"ׅhSHrD\'r]~/>p;:Piuu:"9ő=tTaS7V2rӷk7mb[^WmPp*[y.Þ6f]cizJCgRR@UVl큝.WJP1N{/\whZ ػϧӱE7|E֫Sί.x-Y&pi%v''-x6r'Ws*6=DwwUu]=C?MK [yrtܒG$!WGqJ*%SAz ED[^)/tė/g=#Omd.|^n/sl׉g DZqemqowݮRzUܜ=ڽ-o/Iۖ;qVʘgPp|mm;6zGl9.8pwWgsJ2qPbe}}UpNjٯ}7TMQKrؽtEx%v w߾8%|j;~|}pK]ơ/ w߾8%|j;~|}pK]ơ/ w&~e_H 8PL7:%ʭ5Kw&U2vwR_+rm'}C7#rWoO&HoG?M$UR7{FU]u ;# !Wk`|W>׹潇9Vn)6)*ҹ{%qV4q>W1vi#T"Qk&GwxcJBJ- Ϸ^ˁxkU}ԣ/3.;]J=<*)cS)ROK9H=,r zX @)cS)Da^ԽQ gxJI=w֣gf*TRj

Correspondence to Mohamad Adam Bujang, PhD. Clinical Research Centre, Sarawak General Hospital, Jalan Tun Ahmad Zaidi Adruce, 93586 Kuching, Sarawak, Malaysia. adam@crc.gov.my

Citation: Bujang MA. An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers. Restor Dent Endod 2024;49(2):e21.

• Received: October 11, 2023   • Accepted: January 4, 2024

Copyright © 2024. The Korean Academy of Conservative Dentistry

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 13,213 Views
  • 333 Download
  • 28 Web of Science
  • 30 Crossref
  • 28 Scopus
prev next
  • Objectives
    This paper aims to serve as a useful guide for sample size determination for various correlation analyses that are based on effect sizes and confidence interval width.
  • Materials and Methods
    Sample size determinations are calculated for Pearson’s correlation, Spearman’s rank correlation, and Kendall’s Tau-b correlation. Examples of sample size statements and their justification are also included.
  • Results
    Using the same effect sizes, there are differences between the sample size determination of the 3 statistical tests. Based on an empirical calculation, a minimum sample size of 149 is usually adequate for performing both parametric and non-parametric correlation analysis to determine at least a moderate to an excellent degree of correlation with acceptable confidence interval width.
  • Conclusions
    Determining data assumption(s) is one of the challenges to offering a valid technique to estimate the required sample size for correlation analyses. Sample size tables are provided and these will help researchers to estimate a minimum sample size requirement based on correlation analyses.
Correlation analysis is a common statistical technique in most types of research. It requires 2 variables that are either expressed in a numerical form or measured on at least an ordinal scale. In other words, the correlation test aims to measure whether or not there is a correlation between the 2 variables, as well as the direction and magnitude (or strength) of the correlation. The correlation is denoted by the symbol r and its coefficient shall hold a value that can range from -1 (perfect negative correlation) to +1 (perfect positive correlation) where a correlation of 0 indicates the absence of a relationship between the 2 variables being studied [1].
There are 3 popular measures of correlation such as Pearson’s correlation, Kendall-Tau b correlation, and Spearman’s rank correlation. The important assumption for performing these correlation analyses is that the 2 values should be a related pair of values for each observation. The measurement scale of the data for conducting Pearson’s correlation and Spearman’s rank correlation analyses are the same, which is preferably in an interval or a ratio scale. Pearson’s correlation is a parametric test and therefore its analysis will require the fulfillment of the parametric assumptions. If any of these parametric assumptions have been violated, then it is recommended to use the non-parametric alternative to Pearson’s correlation, i.e., Spearman’s rank correlation instead [2].
Kendall-Tau b is also a non-parametric type of analysis that commands other special characteristics in the data pair whereby it is a type of correlation test that can only accept 2 variables that are being measured at least in an ordinal scale and also following a monotonicity pattern [3]. This means that there is a consistent direction of the relationship between the 2 variables in that when 1 variable goes up, the other goes up. In this case, a plot of the 2 variables would move consistently in the upward direction. The correlation can also be monotonic if when 1 variable goes up, the other goes down. Thus, the plot of the 2 variables would move consistently in the downward direction.
One of the common problems encountered by a researcher in designing a study involving correlation analysis is to determine its minimum required sample size. In the case of correlation analyses, the calculation allows the researcher to set any value for the effect size, which can range from extremely small (i.e. r = 0.1) to extremely large (i.e. r = 0.9). It is necessary to establish appropriate guidelines for sample size calculation and justification for these analyses to assist the researcher in making a prudent decision for sample size planning involving a correlation analysis. Therefore, this study aims to provide a useful guideline for sample size determination for conducting correlation analyses based on an estimation by the confidence interval. Although the sample size determination for correlations has always been facilitated by the use of appropriate statistical software and published sample size tables which are readily available in the existing literature, a list of useful guidelines does serve to assist the researchers in determining the minimum required sample size for their correlation studies [4,5,6].
Sample size formula
Sample size calculation was conducted for Pearson’s correlation, Spearman’s rank correlation, and Kendall’s Tau-b correlation. The calculation for these statistical analyses was based on a formula introduced in a previous study [4]. For all these calculations, the confidence interval is set at 95.0%. The target correlation coefficients are set at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. Correspondingly, the precision of the 95% confidence interval of the correlation coefficient will be set by pre-specifying the widths of the confidence intervals to be 0.1, 0.2, 0.3, 0.4, and 0.5. A careful perusal followed by a thorough discussion of the above results shall form the basis for guiding a researcher in determining the minimum required sample size for their studies.
Software
The minimum sample size requirement was estimated by using PASS 2022 (NCSS LLC; Kaysville, UT, USA), Power Analysis and Sample Size Software. The PASS software is a commercial software that provides a list of tools for determining sample size requirements for thousands of statistical tests and confidence interval scenarios. Each sample size technique in this software has been carefully validated and substantiated by scientifically sound published articles [7].
A careful observation of the results has found that the sample size requirement increases for a smaller target correlation coefficient and also for a smaller or narrower width of the 95% confidence interval, both of which are set for the sample size calculation. Using the same effect sizes, the sample size calculation obtained from Spearman’s rank correlation shall yield the largest value in comparison to those values obtained from the other 2 statistical analyses. There are also several highly significant differences between the 3 different statistical analyses in their sample size determination (Table 1).
Table 1

Sample size calculation for Pearson’s, Kendall-Tau’s, and Spearman’s rank correlations based on 95% confidence interval (CI) width

Effect size Width Width for both sides 95% CI np nk ns diff.*
0.1 0.1 ± 0.05 0.050, 0.150 1,507 662 1,515 8
0.2 ± 0.10 0.000, 0.200 378 168 379 1
0.3 ± 0.15 −0.050, 0.250 168 77 169 1
0.4 ± 0.20 −0.100, 0.300 95 45 96 1
0.5 ± 0.25 −0.150, 0.350 61 30 62 1
0.2 0.1 ± 0.05 0.150, 0.250 1,417 622 1,446 29
0.2 ± 0.10 0.100, 0.300 355 158 362 7
0.3 ± 0.15 0.050, 0.350 159 72 162 3
0.4 ± 0.20 0.000, 0.400 90 42 91 1
0.5 ± 0.25 −0.050, 0.450 58 28 59 1
0.3 0.1 ± 0.05 0.250, 0.350 1,274 560 1,331 57
0.2 ± 0.10 0.200, 0.400 320 143 334 14
0.3 ± 0.15 0.150, 0.450 143 65 149 6
0.4 ± 0.20 0.100, 0.500 81 38 85 4
0.5 ± 0.25 0.050, 0.550 53 26 55 2
0.4 0.1 ± 0.05 0.350, 0.450 1,086 478 1,173 87
0.2 ± 0.10 0.300, 0.500 273 122 295 22
0.3 ± 0.15 0.250, 0.550 123 57 132 9
0.4 ± 0.20 0.200, 0.600 70 34 75 5
0.5 ± 0.25 0.150, 0.650 46 23 49 3
0.5 0.1 ± 0.05 0.450, 0.550 867 382 975 108
0.2 ± 0.10 0.400, 0.600 219 99 246 27
0.3 ± 0.15 0.350, 0.650 99 46 111 12
0.4 ± 0.20 0.300, 0.700 57 28 64 7
0.5 ± 0.25 0.250, 0.750 37 19 42 5
0.6 0.1 ± 0.05 0.550, 0.650 633 280 746 113
0.2 ± 0.10 0.500, 0.700 161 73 189 28
0.3 ± 0.15 0.450, 0.750 74 35 86 12
0.4 ± 0.20 0.400, 0.800 43 22 50 7
0.5 ± 0.25 0.350, 0.850 29 16 33 4
0.7 0.1 ± 0.05 0.650, 0.750 404 180 503 99
0.2 ± 0.10 0.600, 0.800 105 49 129 24
0.3 ± 0.15 0.550, 0.850 49 24 60 11
0.4 ± 0.20 0.500, 0.900 30 16 36 6
0.5 ± 0.25 0.450, 0.750 20 12 25 5
0.8 0.1 ± 0.05 0.750, 0.850 205 93 269 64
0.2 ± 0.10 0.700, 0.900 56 27 72 16
0.3 ± 0.15 0.650, 0.950 28 15 35 7
0.4 ± 0.20 0.600, 1.000 18 11 22 4
0.5 ± 0.25 0.550, 1.000 13 9 16 3
0.9 0.1 ± 0.05 0.850, 0.950 62 30 86 24
0.2 ± 0.10 0.800, 1.000 20 12 27 7
0.3 ± 0.15 0.750, 1.000 12 8 16 4
0.4 ± 0.20 0.700, 1.000 9 7 12 3
0.5 ± 0.25 0.650, 1.000 8 6 10 2
np, sample size for Pearson’s correlation; nk, sample size for Kendall Tau-b’s correlation; ns, sample size for Spearman’s correlation.
*diff. represents the difference between ns - np; Lower bound with either zero or negative value; Upper bound with more than 1.000.
By fixing the width of confidence interval at 0.3 and level of the confidence at 95.0%, the recommended sample size is between 12 (for rp = 0.9) to 143 (for rp = 0.3) for Pearson’s correlation, between 8 (for rk = 0.9) to 65 (for rk = 0.3) for Kendall’s Tau-b’s correlation, and between 16 (for rs = 0.9) to 149 (for rs = 0.3) for Spearman’s rank correlation. For a study that aims to achieve a target correlation with a high level of precision such as fixing its 95% confidence level width at 0.1, the recommended sample size requirement is between 62 (for r = 0.9) to 1274 (for r = 0.3) for Pearson’s correlation, and between 30 (for rk = 0.9) to 560 (for rk = 0.3) for Kendall’s Tau-b’s correlation. On the other hand, Spearman’s rank correlation is commanding the highest sample size requirement by necessitating a sample size of between 86 (for r = 0.9) to 1331 (for r = 0.3) (Table 1).
The results have indicated that some of the calculations have reported a lower bound for a 95% level of confidence such as at zero or even negative values, especially for those with very low target correlation coefficient values (i.e. 0.1 and 0.2). Therefore, it is not necessary to set a bigger width of 95% confidence interval for very low values of target correlation coefficient such as 0.1 and 0.2. This means that only a very narrow width of 0.1 will be sufficient for a low target correlation coefficient value of 0.1, and a width of 0.1, 0.2, and 0.3 will also be sufficient for a slightly higher target correlation coefficient value of 0.2.
On the other hand, it was found that some upper bound of 95% confidence intervals yielded a confidence level of more than 1.0, especially for a high target correlation coefficient value such as 0.8 and 0.9. Again, it is also not necessary to set a big width of 95% confidence interval for a high target correlation coefficient value of 0.8 and 0.9. Hence, only a narrow width of 0.1, 0.2, 0.3, and 0.4 will be required for a high target correlation coefficient value of 0.8. Likewise, an even narrower width of 0.1 and 0.2 will be required for a higher target correlation coefficient value of 0.9. Hence, it is advisable to take such measures when adopting such guidelines for the determination of sample size requirements for correlation tests to avoid erroneously deciding upon an extremely small sample size for our study (Table 1).
This paper discusses the concept and guidelines for sample size determination for correlation analyses specifically based on a specific method. Although a theory regarding the sample size calculation technique that was based on confidence interval width for correlation analyses has already been published, this paper emphasizes further elaboration in the practices and step-by-step guidelines on how to conduct sample size planning for correlation analyses. These discussions are necessary to strengthen the understanding regarding sample size among the researchers who are the majority without adequate knowledge of statistics. Literature has proven that such discussion papers are very useful for researchers [8,9]. The discussion is divided into several sections to elaborate on the various aspects of the sample size determination for performing correlation analyses, as well as to raise any issues of concern in this area.
Advantage of performing a sample size calculation based on precision (via a confidence interval)
There is a fundamental difference between sample size calculation based on hypothesis testing and the same calculation based on a 95% confidence interval. Based on the calculation done by a previous study involving hypothesis testing, the researcher will not be able to determine the level of accuracy of the correlation coefficients based on the sample size alone. Instead, if the sample size calculation is derived from an estimation obtained from the confidence interval of the target correlation coefficient value, then it will enable the researcher to impose clear expectations on its target value [10]. For example, if a study attempts to target a correlation coefficient of 0.8 by conducting the Pearson’s correlation, then the researcher will know that to prove the truth of such a high level of correlation with high accuracy such as between 0.75 to 0.85, a minimum sample size of 205 subjects will be required. If the researcher manages to recruit only 20 subjects, he/she will know that the correlation coefficients in the target population will probably range from 0.45 to 0.75. In other words, as the accuracy for the derived value of the correlation coefficient will probably range from low to moderate only, therefore he/she will not be able to confidently determine exactly what is the magnitude of the correlation.
Besides that, the calculation of the correlation coefficient based on a 95% confidence interval will also provide a hint for setting an appropriate width of the confidence interval for sample size calculation. For example, setting the confidence interval’s width of 0.3 for a very low target correlation coefficient value of 0.1 is unnecessary since this will yield a lower bound which indicates a too low level of confidence, which will probably range from 0 to negative values. Likewise, it will also not be necessary to set a bigger width of the confidence interval to reduce the sample size requirement if the resulting calculation produces too low a level of confidence with 0 or even negative values for its lower bound of the confidence interval, or produces too high a level of confidence with more than 1.0 for its upper bound of the confidence interval.
A comparison between sample size calculation based on parametric versus non-parametric
This study has prepared 3 sample size tables for use in guiding the conduct of both parametric and non-parametric statistical analyses for correlation. Among the 3 statistical analyses, namely: Pearson’s correlation, Spearman’s rank correlation, and Kendall’s Tau-b correlation, it was found that the sample size requirement for performing Kendall’s Tau-b correlation is the smallest. Results of this study have also shown that based on the same effect size, Spearman’s rank correlation will usually yield a larger sample size requirement than Pearson’s correlation. Bearing in mind that this difference can often be considerably large, it is therefore necessary to first check the validity of these assumptions in the data involved such as from the literature, before proceeding to the sample size estimation. Without giving due consideration to these assumptions, the sample size calculation may not be valid since it is always possible for a study to be rendered underpowered subsequently, and hence valid conclusions cannot be drawn from its findings.
Guideline for assessing the sample size requirement based on the predetermined effect size and width of 95% confidence interval
Using sample size tables is one of the smartest and easiest ways to estimate the minimum sample size requirement [8,9]. Such sample size tables shall facilitate a researcher in deciding the minimum required sample size without the need to identify the correct formula for sample size calculation which is based on a specific statistical analysis. Nevertheless, it is still recommended to formulate a list of very useful guidelines to assist a researcher in making the correct decision for sample size determination when planning a correlation study. In the case of correlation, the calculation shall allow the researchers to pre-specify any values of its effect size which can range from an extremely small value (i.e. r = 0.1) to an extremely large value (i.e. r = 0.9). In fulfillment of this aim, this study thereby proposes and recommends a simplified yet useful guideline for which a small, moderate, or high value of the effect size has been predetermined in a study involving the correlation coefficient.
It is very rare for a researcher to purposefully select a small effect size (i.e. effect size = 0.1 or 0.2) for a study. One of the reasons for setting a smaller effect size is to merely prove that the 2 variables have either very low or almost 0 correlation. In the multiple regression model, one of the assumptions is to ensure all the predictors have no strong correlation with each other [11,12]. One of the ways to confirm this is by measuring the level of correlation between the 2 variables. By convention, it can be assumed that 2 variables have a weak correlation when the correlation between them is less than 0.3 since less than 0.3 indicates a low correlation [13]. On the other hand, other studies can also opt to use a much bigger cut-off such as a correlation coefficient of less than 0.8 to indicate no strong correlation [12,14]. Another possible scenario is when the researcher aims to determine which predictors (or variables) should be regarded as not important or less important. In some cases, proving that a variable does not correlate with another variable can also be considered an important finding [15,16].
Conventionally, most research studies aim to prove that there is a correlation between 2 variables. In this case, the ideal effect size is 0.3 since a cut-off value of 0.3 and above shall indicate that the correlation is sizeable or of a significant magnitude [13]. Before conducting an analysis, a researcher usually will not know the exact value of the effect size which a study can realistically achieve since its true value can be anything from 0.3 and above. However, for sample size calculation, it is often recommended to set an effect size of 0.3 because by doing so, the sample size calculation can yield a sufficiently large sample size requirement which can detect at least a moderate to high effect size.
Another rare condition is when the researcher is required to set an excellent effect size for a study, which can often be particularly high (i.e. effect size = 0.8 or 0.9). However, the researcher shall need to exercise additional caution since an unusually high effect size will also yield a very low sample size requirement [4,5,6]. Normally, a smaller sample size requirement is often preferable by many researchers since it will save cost and time but it is also possible for a researcher to be exposed to a risk of obtaining insignificant results of the study if it is severely underpowered. Anyway, we must always bear in mind there are always highly relevant and/or valid reasons for setting a very high effect size when conducting correlation studies. One of the plausible reasons is to establish an exceptionally high level of dependence between the 2 variables, namely the predictor and outcome variables. In this circumstance, the aim is not to check for the fulfillment of the assumption of independence for the regression model but instead to determine a high-accuracy model to enable it to predict an outcome [17].
Sample size statement
This study proposes the formulation of sample size statements based on the recommendation from a previous study [18]. Bujang in his paper recommends 5 steps (Step 1: To understand the objective of a study, Step 2: To choose the appropriate statistical analysis, Step 3: To estimate or calculate the sample size, Step 4: To make allowances to cater for the possibility of non-response, Step 5: To write down a sample size statement for its sample size determination. However, reporting type I error and power of the study is not necessary in this case since sample size calculation is based on the 95% confidence interval width and assumed correlation coefficient.
The examples are as follows:

Sample size statement based on Pearson’s correlation

This study aims to determine a correlation between variable A and variable B. Both variables are measured at least on an interval scale and parametric assumptions are assumed. Therefore, Pearson’s correlation test will be used for analysis. By setting the correlation coefficient at 0.7 with a 95% confidence interval of width 0.3 (0.55, 0.85), therefore the minimum required sample size is 49. To incorporate a non-response rate of 20.0%, a minimum sample size of 62 respondents will be required.

Sample size statement based on Spearman’s rank correlation

This study aims to determine a correlation between variable C and variable D. Both variables are measured at least on an interval scale. Based on the findings of a previous study, the data did not fulfill the assumptions necessary for performing a parametric test (state the reference). Therefore, Spearman’s rank correlation test will be used for its analysis. By setting the correlation coefficient at 0.7 with a 95% confidence interval of width 0.3 (0.55, 0.85), therefore the minimum required sample size is 60. To incorporate a non-response rate of 20.0%, a minimum sample size of 75 respondents will be required.

Sample size statement based on Kendall’s Tau correlation

This study aims to determine a correlation between variable E and variable F. Both variables are measured on an ordinal scale. Based on the findings of a previous study, the pattern correlation of the 2 variables had shown a monotonic pattern (state the reference). Therefore, Kendall’s Tau-b correlation test will be used for analysis. By setting the correlation coefficient at 0.7 with a 95% confidence interval of width 0.3 (0.55, 0.85), therefore the minimum required sample size is 24. To incorporate a non-response rate of 20.0%, a minimum sample size of 30 respondents will be required.
This paper proposes and recommends a simplified yet highly useful guide to determine the sample size requirements for correlation analyses based on the estimation by a 95% confidence interval. Different target effect sizes can be used depending on a specific scenario. In general, a minimum sample size of 149 is usually deemed adequate for performing both parametric and non-parametric correlation analyses to establish at least a moderate to excellent level of correlation. It must be noted that each statistical analysis will command a different sample size requirement even for the same effect size. Therefore, it is always recommended to check for the validity of the necessary assumptions in the data involved by ensuring they have fulfilled all the necessary assumptions to perform a particular statistical analysis, to determine which types of statistical analysis shall provide the scientifically valid approach for estimating the minimum sample size required for the study.
We thank the Director General Ministry of Health for permitting us to publish the paper.

Conflict of Interest: No potential conflict of interest relevant to this article was reported.

Author Contributions:

  • Conceptualization: Bujang MA.

  • Data curation: Bujang MA.

  • Formal analysis: Bujang MA.

  • Funding acquisition: Bujang MA.

  • Investigation: Bujang MA.

  • Methodology: Bujang MA.

  • Project administration: Bujang MA.

  • Resources: Bujang MA.

  • Software: Bujang MA.

  • Supervision: Bujang MA.

  • Validation: Bujang MA.

  • Visualization: Bujang MA.

  • Writing - original draft: Bujang MA.

  • Writing - review & editing: Bujang MA.

  • 1. Pearson K. Notes on the history of correlation. Biometrika 1920;13:25-45.Article
  • 2. Rodriguez RN. Correlation. In: Kotz S, Johnson NL, editors. Encyclopedia of statistical sciences. New York, NY: Wiley; 1982. p. 193-204.
  • 3. Kendall M. A new measure of rank correlation. Biometrika 1938;30:81-93.Article
  • 4. Bonett DG, Wright TA. Sample size requirements for estimating Pearson, Kendall, and Spearman correlations. Psychometrika 2000;65:23-28.ArticlePDF
  • 5. Moinesterm M, Gottfried R. Sample size estimation for correlations with pre-specified confidence interval. TQMP 2014;10:124-130.Article
  • 6. Bujang MA, Nurakmal B. Sample size guideline for correlation analysis. World J Soc Sci Res 2016;3:37-46.ArticlePDF
  • 7. NCSS, LLC. PASS 2022 Power Analysis and Sample Size Software. Kaysville, UT: NCSS, LLC.; 2022.
  • 8. Bujang MA, Adnan TH. Requirements for minimum sample size for sensitivity and specificity analysis. J Clin Diagn Res 2016;10:YE01-YE06.ArticlePubMedPMC
  • 9. Bujang MA, Baharum N. A simplified guide to the determination of sample size requirements for estimating the value of intraclass correlation coefficient: a review. Arch Orofac Sci 2017;12:1-11.
  • 10. Bujang MA. An elaboration on sample size planning for performing a one-sample sensitivity and specificity analysis by basing on calculations on a specified 95% confidence interval width. Diagnostics (Basel) 2023;13:1390.ArticlePubMedPMC
  • 11. Young DS. Handbook of regression methods. Boca Raton, FL: CRC Press; 2017.
  • 12. Shrestha N. Detecting multicollinearity in regression analysis. Am J Appl Math Stat 2020;8:39-42.Article
  • 13. Cohen J. A power primer. Psychol Bull 1992;112:155-159.ArticlePubMed
  • 14. Belinda B, Peat J. Medical statistics: a guide to SPSS, data analysis, and critical appraisal. 2nd ed. Oxford: Wiley; 2014.
  • 15. El Hangouche AJ, Jniene A, Aboudrar S, Errguig L, Rkain H, Cherti M, et al. Relationship between poor quality sleep, excessive daytime sleepiness and low academic performance in medical students. Adv Med Educ Pract 2018;9:631-638.PubMedPMC
  • 16. Ottaviani FM, Marco AD. Multiple linear regression model for improved project cost forecasting. Procedia Comput Sci 2022;196:808-815.Article
  • 17. Chu M, Nguyen T, Pandey V, Zhou Y, Pham HN, Bar-Yoseph R, et al. Respiration rate and volume measurements using wearable strain sensors. NPJ Digit Med 2019;2:8.ArticlePubMedPMCPDF
  • 18. Bujang MA. A step-by-step process on sample size determination for medical research. Malays J Med Sci 2021;28:15-27.ArticlePubMedPMC

Tables & Figures

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Model Selection Challenges in Non-Stationary Precipitation Estimation: The Role of AIC, BIC, and Covariate Choice
      Murat Yegin, Gulsah Karakaya, Elcin Kentel
      Water Resources Management.2026;[Epub]     CrossRef
    • Sampling Methods and Sample Size Determination in Clinical Research: An Educational Review
      Azzam Zrineh, Maysa Al‐Usta, Abdallah Alwawi
      Journal of General and Family Medicine.2026;[Epub]     CrossRef
    • Return to work in young and middle-aged colorectal cancer survivors: Factors influencing self-efficacy, fear, resilience, and financial toxicity
      Dan Hu, Yue Li, Hua Zhang, Lian-Lian Wang, Wen-Wen Liu, Xin Yang, Ming-Zhao Xiao, Hao-Ling Zhang, Juan Li
      World Journal of Gastroenterology.2025;[Epub]     CrossRef
    • Return to work in young and middle-aged colorectal cancer survivors: Factors influencing self-efficacy, fear, resilience, and financial toxicity
      Dan Hu, Yue Li, Hua Zhang, Lian-Lian Wang, Wen-Wen Liu, Xin Yang, Ming-Zhao Xiao, Hao-Ling Zhang, Juan Li
      World Journal of Gastroenterology.2025;[Epub]     CrossRef
    • Predictive validity of obstacle-crossing test variations in identifying fallers after inpatient rehabilitation for stroke
      Prudence Plummer, Megan E. Schliep, Lina Jallad, Ehsan Sinaei, Jody A. Feld, Vicki S. Mercer
      Topics in Stroke Rehabilitation.2025; 32(6): 631.     CrossRef
    • Global NDVI-LST Correlation: Temporal and Spatial Patterns from 2000 to 2024
      Ehsan Rahimi, Pinliang Dong, Chuleui Jung
      Environments.2025; 12(2): 67.     CrossRef
    • Increased functional connectivity of motor regions and dorsolateral prefrontal cortex in musicians with focal hand dystonia
      Stine Alpheis, Christopher Sinke, Julian Burek, Tillmann H. C. Krüger, Eckart Altenmüller, Daniel S. Scholz
      Journal of Neurology.2025;[Epub]     CrossRef
    • Expanded span of control, leadership and management performance, work-related stress, and job satisfaction among first-line managers: A repeated cross-sectional study
      Jonas Svanström, Bernice Skytt, Maria Lindberg, Magnus Lindberg
      WORK: A Journal of Prevention, Assessment & Rehabilitation.2025; 81(3): 2952.     CrossRef
    • The Dilemma and Wisdom in Translating p Values: A Collaborative Approach to Strengthening Scientific Validity
      Mohamad Adam Bujang, Suyan Tian
      BioMed Research International.2025;[Epub]     CrossRef
    • Comparison of Condylar Position Discrepancies Assessed Using an Optical Jaw Tracking System and a Conventional Condylar Position Indicator
      Joana Silva, Eugénio Martins, Alberto Canabez, Domingo Martin, Conchita Martin
      Prosthesis.2025; 7(2): 40.     CrossRef
    • Examining the link between intensive care unit nurses’ burnout and perceived quality of life: a multicenter cross-sectional study
      Hazel Novela Villagracia, Tajah Ali Akhdair, Salwa Abd El Gawad Sallam, Rico William A. Villagracia, Bushra Alshammari, Awatif M. Alrasheeday, Shaimaa Mohamed Nageeb, Lea L. Dando, Odeta A. Nacubuan, Turki Ahmed Alsaif, Sage Mesias Raguindin, Ingrid Jacin
      BMC Nursing.2025;[Epub]     CrossRef
    • Microstructural Engineering of Porous Polymethylsilsesquioxane via Solvothermal Synthesis in Diverse Solvents
      Stefanie Beatrice Hauser, Gabriella Saraiva, Chiara Hasenfratz, Mengmeng Li, Zahra Mazrouei-Sebdani, Wim J. Malfait, Shanyu Zhao
      ACS Applied Materials & Interfaces.2025; 17(17): 25634.     CrossRef
    • Playfulness of Preschool-Aged Children With Autism in a Sensory Integration Room
      Sinem Kars, Esra Aki
      Clinical Pediatrics.2025; 64(11): 1538.     CrossRef
    • Fish community responses to habitat alteration: Interactions, biomass shifts, and the value of imperfect data
      Eric A. Bonk, Robert H. Hanner, Adrienne J. Bartlett, Gerald R. Tetreault
      Environmental Biology of Fishes.2025; 108(7): 1047.     CrossRef
    • Osteoprotegerin and its ligands RANKL and TRAIL in falciparum, vivax, and knowlesi malaria
      Arya Sheela Nair, John Woodford, Jessica Loughland, Dean Andrew, Kim Piera, Fiona Amante, Timothy William, Matthew J. Grigg, James S. McCarthy, Nicholas M. Anstey, Michelle J. Boyle, Bridget E. Barber
      iScience.2025; 28(6): 112768.     CrossRef
    • Text Analysis of Corporate Cryptocurrency Disclosures in Varying Market Conditions
      Ramy Elitzur, Wendy Rotenberg
      Journal of Alternative Finance.2025; 2(3): 302.     CrossRef
    • Evaluation of the Influence of Intervention Tools Used in Nutrition Education Programs: A Mixed Approach
      Luca Muzzioli, Costanza Gimbo, Maria Pintavalle, Silvia Migliaccio, Lorenzo M. Donini
      Nutrients.2025; 17(15): 2460.     CrossRef
    • Path Analysis Reveals Plant Pod Number as the Key Trait for Indirect Selection in Segregating Generations For Pigeonpea Grain Yield
      Carlos Antonio Fernandes Santos, Antonio Elton da Silva Costa
      Revista de Gestão Social e Ambiental.2025; 19(8): e013079.     CrossRef
    • Analysis of the current status of attitudes toward aging and its influencing factors in elderly maintenance hemodialysis patients in remote areas: a cross-sectional study
      Hao-jie Zeng, Zheng-juan Shi, Mei-ying Shen, Sheng-jing Li, Xiang Peng
      Geriatric Nursing.2025; 65: 103553.     CrossRef
    • Exploratory Data Analysis of a North American Whole Building Life Cycle Assessment datasets
      Yang Shen, Brad Benke, Milad Ashtiani, Monica Huang, Kathrina Simonen
      Building and Environment.2025; 286: 113655.     CrossRef
    • Dengue disease severity in humans is augmented by waning Japanese encephalitis virus immunity
      Sidharth Malhotra, Birendra P. Gupta, Surendra Uranw, Chinmay Kumar Mantri, Abhay P.S. Rathore, Ashley L. St. John
      Science Translational Medicine.2025;[Epub]     CrossRef
    • Investigation of Anthropogenic and Emerging Contaminants in Sinkholes (Cenotes) of the Great Mayan Aquifer, Yucatán Peninsula
      Sarah Kopczynski, Rayna Nolen, David Hala, Fernanda Lases-Hernández, Wendy Escobedo-Hinojosa, Flor Arcega-Cabrera, Ismael Oceguera-Vargas, Antonietta Quigg
      Archives of Environmental Contamination and Toxicology.2025; 89(3): 279.     CrossRef
    • Bahasa Indonesia version of Weight Stigma Exposure Inventory (WeSEI): Translation and validation among young adults
      Kamolthip Ruckwongpatr, Jian-An Su, I-Hua Chen, Nadia Bevan, Ira Nurmala, Muthmainnah Muthmainnah, Lutfi Agus Salim, Asma Nadia, Musheer A. Aljaberi, Mark D. Griffiths, Chung-Ying Lin
      Acta Psychologica.2025; 261: 105748.     CrossRef
    • Clinician-Caregiver Engagement in Older Adult Care. Development of a Validated Caregiver Experience Survey to Inform the Optimization of the Caregiver Role
      Ronaye T Gilsenan, Rhonda E Schwartz, Iris A Gutmanis
      Journal of Patient Experience.2025;[Epub]     CrossRef
    • Evaluating the quantity and spatial density of macrophage-like cells in patients with retinal vascular disease and healthy subjects via non-invasive retinal imaging
      Farhad Ghaseminejad, Thomas J. van Rijssen, Parsa Khatami, Pedro L. Rissoli, Ricky Chen, Yudan Chen, Brendan Tao, Myeong Jin Ju, Faisal Beg, Eduardo V. Navajas
      International Journal of Retina and Vitreous.2025;[Epub]     CrossRef
    • Sperm DNA Fragmentation in Normozoospermic Men Is Associated with Blastocyst Formation and Quality in Conventional In Vitro Fertilization
      Yusaku Mori, Linji Chen, Shogo Nishii, Miwa Sakamoto, Makoto Ohara, Akihiko Sekizawa, Sho-Ichi Yamagishi
      Journal of Clinical Medicine.2025; 14(24): 8892.     CrossRef
    • The Impact of Depression on Defense Mechanisms in Adults: The Moderating Role of Attachment Style
      Andra-Iuliana Tanase, Amelia-Damiana Trifu, Simona Trifu
      Behavioral Sciences.2025; 16(1): 57.     CrossRef
    • The Role of the Basophil Activation Test in the Diagnosis of Drug-Induced Anaphylaxis
      Maria Czarnobilska, Małgorzata Bulanda, Ewa Czarnobilska, Wojciech Dyga, Marcel Mazur
      Diagnostics.2024; 14(18): 2036.     CrossRef
    • Food insecurity impacts diet quality and adherence to the gluten‐free diet in youth with celiac disease
      Xinyi Wang, Sven Anders, Zhiqian Jiang, Marcia Bruce, Dominica Gidrewicz, Margaret Marcon, Justine M. Turner, Diana R. Mager
      Journal of Pediatric Gastroenterology and Nutrition.2024; 79(6): 1180.     CrossRef
    • Fuel Load Models for Different Tree Vegetation Types in Sichuan Province Based on Machine Learning
      Hongrong Wang, Haoquan Chen, Hanmin Sheng, Kai Chen, Chen Dong, Zhiqiang Min
      Forests.2024; 16(1): 42.     CrossRef

    • ePub LinkePub Link
    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers
      Restor Dent Endod. 2024;49(2):e21  Published online May 2, 2024
      Close
    • XML DownloadXML Download
    An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers
    An elaboration on sample size determination for correlations based on effect sizes and confidence interval width: a guide for researchers

    Sample size calculation for Pearson’s, Kendall-Tau’s, and Spearman’s rank correlations based on 95% confidence interval (CI) width

    Effect sizeWidthWidth for both sides95% CInp nk ns diff.*
    0.10.1± 0.050.050, 0.1501,5076621,5158
    0.2 ± 0.10 0.000, 0.200 378 168 379 1
    0.3 ± 0.15 −0.050, 0.250 168 77 169 1
    0.4 ± 0.20 −0.100, 0.300 95 45 96 1
    0.5 ± 0.25 −0.150, 0.350 61 30 62 1
    0.20.1± 0.050.150, 0.2501,4176221,44629
    0.2± 0.100.100, 0.3003551583627
    0.3± 0.150.050, 0.350159721623
    0.4 ± 0.20 0.000, 0.400 90 42 91 1
    0.5 ± 0.25 −0.050, 0.450 58 28 59 1
    0.30.1± 0.050.250, 0.3501,2745601,33157
    0.2± 0.100.200, 0.40032014333414
    0.3± 0.150.150, 0.450143651496
    0.4± 0.200.100, 0.5008138854
    0.5± 0.250.050, 0.5505326552
    0.40.1± 0.050.350, 0.4501,0864781,17387
    0.2± 0.100.300, 0.50027312229522
    0.3± 0.150.250, 0.550123571329
    0.4± 0.200.200, 0.6007034755
    0.5± 0.250.150, 0.6504623493
    0.50.1± 0.050.450, 0.550867382975108
    0.2± 0.100.400, 0.6002199924627
    0.3± 0.150.350, 0.650994611112
    0.4± 0.200.300, 0.7005728647
    0.5± 0.250.250, 0.7503719425
    0.60.1± 0.050.550, 0.650633280746113
    0.2± 0.100.500, 0.7001617318928
    0.3± 0.150.450, 0.75074358612
    0.4± 0.200.400, 0.8004322507
    0.5± 0.250.350, 0.8502916334
    0.70.1± 0.050.650, 0.75040418050399
    0.2± 0.100.600, 0.8001054912924
    0.3± 0.150.550, 0.85049246011
    0.4± 0.200.500, 0.9003016366
    0.5± 0.250.450, 0.7502012255
    0.80.1± 0.050.750, 0.8502059326964
    0.2± 0.100.700, 0.90056277216
    0.3± 0.150.650, 0.9502815357
    0.4± 0.200.600, 1.0001811224
    0.5 ± 0.25 0.550, 1.000 13 9 16 3
    0.90.1± 0.050.850, 0.95062308624
    0.2± 0.100.800, 1.0002012277
    0.3 ± 0.15 0.750, 1.000 12 8 16 4
    0.4 ± 0.20 0.700, 1.000 9 7 12 3
    0.5 ± 0.25 0.650, 1.000 8 6 10 2

    np, sample size for Pearson’s correlation; nk, sample size for Kendall Tau-b’s correlation; ns, sample size for Spearman’s correlation.

    *diff. represents the difference between ns - np; Lower bound with either zero or negative value; Upper bound with more than 1.000.

    Table 1 Sample size calculation for Pearson’s, Kendall-Tau’s, and Spearman’s rank correlations based on 95% confidence interval (CI) width

    np, sample size for Pearson’s correlation; nk, sample size for Kendall Tau-b’s correlation; ns, sample size for Spearman’s correlation.

    *diff. represents the difference between ns - np; Lower bound with either zero or negative value; Upper bound with more than 1.000.


    Restor Dent Endod : Restorative Dentistry & Endodontics
    Close layer
    TOP