Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Articles

Page Path
HOME > Restor Dent Endod > Volume 29(3); 2004 > Article
  • rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • slot deposit pulsa
  • bo slot gacor
  • toto togel
  • slot gacor
  • login rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • rupiahtoto
  • Original Article Effect of pH and storage time on the elution of residual monomers from polymerized composite resins
    Cheol-Min Jeon1, Hyun-Mi Yoo2, Hyuk-Choon Kwon1
    2004;29(3):-266.
    DOI: https://doi.org/10.5395/JKACD.2004.29.3.249
    Published online: May 31, 2004

    1Department of Conservative Dentistry, College of Dentistry, Seoul National University, Korea.

    2Department of Conservative Dentistry, The Institute of Oral Health Science, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Korea.

    Corresponding author: Hyuk-Choon Kwon. Department of Conservative Dentistry, College of Dentistry, Seoul National University, 28-2 Yeongun-dong, Chongro-gu, Seoul, Korea, 110-749. Tel: 82-2-2647-2882, Fax: 82-2-2647-7528, juhohyun@hanmail.net

    Copyright © 2004 Korean Academy of Conservative Dentistry

    • 329 Views
    • 0 Download
    • 2 Crossref
    prev next
    • Objectives
      The purpose of this study was to determine whether pH and time has any influence on the degradation behavior of composite restoration by analyzing the leached monomers of dental composites qualitatively and quantitatively after storage in acetate buffer solution as a function of time using high performance liquid chromatography (HPLC) / mass spectrometer.
    • Materials and Methods
      Three commercial composite restorative resin materials (Z-250, Heliomolar and Aeliteflo) with different matrix structure and filler composition were studied. Thirty specimens (7mm diameter×2mm thick) of each material were prepared. The cured materials were stored in acetate buffer solution at different pH (4, 7) for 1, 7 and 45days. As a reference, samples of unpolymerized composite materials of each product were treated with methanol (10 mg/ml). Identification of the various compounds was achieved by comparison of their mass spectra with those of reference compound, with literature data, and by their fragmentation patterns. Data were analysed statistically using ANOVA and Duncan's test.
    • Results
      1. Amounts of leached TEGDMA in Aeliteflo were significantly larger than those of UDMA in Z-250 and Heliomolar at experimental conditions of different storage time and pH variation (p < 0.001).
      2. As to comparison of the amounts of leached monomers per sorage time, amounts of leached TEGDMA in Aeliteflo and UDMA in Z-250 and Heliomolar were increased in the pH 4 solution more significantly than in the pH 7 solution after 1day, 7days and 45days, respectively (p < 0.001).
      3. In total amounts of all the leached monomers with storage times, the overall amounts of pH 4 extracts were larger than those of pH 7 extracts for all resin groups, but there was no significant difference (p > 0.05).
    Figure 1
    LC / MS-chromatogram of STD from Aeliteflo (Unpolymerized material)
    jkacd-29-249-g001.jpg
    Figure 2
    LC / MS-chromatogram of pH 4 extract from Aeliteflo (Polymerized material)
    jkacd-29-249-g002.jpg
    Figure 3
    LC / MS-chromatogram of pH 7 extract from Aeliteflo (Polymerized material)
    jkacd-29-249-g003.jpg
    Figure 4
    LC / MS-chromatogram of STD from Z-250 (Unpolymerized material)
    jkacd-29-249-g004.jpg
    Figure 5
    LC / MS-chromatogram of pH 4 extract from Z-250 (Polymerized material)
    jkacd-29-249-g005.jpg
    Figure 6
    LC / MS-chromatogram of pH 7 extract from Z-250 (Polymerized material)
    jkacd-29-249-g006.jpg
    Figure 7
    LC / MS-chromatogram of STD from Heliomolar (Unpolymerized material)
    jkacd-29-249-g007.jpg
    Figure 8
    LC / MS-chromatogram of pH 4 extract from Heliomolar (Polymerized material)
    jkacd-29-249-g008.jpg
    Figure 9
    LC / MS - chromatogram of pH 7 extract from Heliomolar (Polymerized material)
    Peak A ; Internal caffeine standard, fragmented methyl methacrylate, methacrylic acid, etc.
    Peak B ; TEGDMA (triethyleneglycol dimethacrylate)
    Peak C ; UDMA (urethane dimethacrylate)
    Peak D ; Bis-GMA (Bisphenol A diglycidyl ether dimethacrylate)
    Peak E ; Unidentified, probably related to Bis-EMA (Ethoxylated bisphenol A dimethacrylate)
    Peak F,G ; A certain dimer or oligomer
    jkacd-29-249-g009.jpg
    Figure 10
    MS spectra of Caffeine (9min)
    jkacd-29-249-g010.jpg
    Figure 11
    MS spectra of TEGDMA (14min)
    jkacd-29-249-g011.jpg
    Figure 12
    MS spectra of UDMA (21min)
    jkacd-29-249-g012.jpg
    Figure 13
    MS spectra of Bis-GMA (23min)
    jkacd-29-249-g013.jpg
    Figure 14
    Leached TEGDMA of Aeliteflo
    jkacd-29-249-g014.jpg
    Figure 15
    Leached UDMA of Z-250
    jkacd-29-249-g015.jpg
    Figure 16
    Leached UDMA of Heliomolar
    jkacd-29-249-g016.jpg
    Figure 17
    Total amount of leached monomers according to storage time
    jkacd-29-249-g017.jpg
    Table 1
    Commercial light-cured dental composite resins used in this study.

    Bis-GMA = Bisphenol A diglycidyl ether dimethacrylate

    TEGDMA = Triethyleneglycol dimethacrylate

    Bis-EMA = Etoxylated Bisphenol A dimethacrylate

    Bis-EMA (6) = Bisphenol A polyetheylene glycol diether dimethacrylate

    UEDMA = Urethane dimethacrylate

    D3MA = Decamethacrylate

    jkacd-29-249-i001.jpg
    Table 2
    Experimental conditions according to different pH and storage time.
    jkacd-29-249-i002.jpg
    Table 3
    Dilution of standard solution (STD) and storage solution

    *ppm = mg/L

    jkacd-29-249-i003.jpg
    Table 4
    Conditions of HPLC
    jkacd-29-249-i004.jpg
    Table 5
    Isolated monomers released at its specific retention time.

    *Bis-EMA (6) ; Bisphenol A polyetheylene glycol diether dimethacrylate.

    jkacd-29-249-i005.jpg
    Table 6
    Chemical structure of fragmented ions related to TEGDMA
    jkacd-29-249-i006.jpg
    Table 7
    Chemical structure of fragmented ions related to UDMA
    jkacd-29-249-i007.jpg
    Table 8
    Leached monomer content of Aelitflo groups

    *%CF = percentage related to the internal caffeine standard

    *STD = standard solution (unpolymerized material)

    jkacd-29-249-i008.jpg
    Table 9
    Leached monomer content of Z-250 groups
    jkacd-29-249-i009.jpg
    Table 10
    Leached monomer content of Heliomolar groups
    jkacd-29-249-i010.jpg
    Table 11
    Amount of leached TEGDMA and UDMA according to storage time (%CF), n = 15

    *: significantly different on the horizontal line (p < 0.001)

    ▸values with the same subscript letter in the same row are not significantly different (p > 0.05)

    jkacd-29-249-i011.jpg
    Table 12
    Relative percentage of cumulative monomers following 45days storage as to original concentration

    %CF = percentage related to the internal caffeine standard

    *%Sol = percentage related to original concentration of STD

    jkacd-29-249-i012.jpg
    • 1. Antonucci JM, Bowen RL. Dimethacrylates derived from hydroxylbenzoic acid. J Dent Res. 1976;55: 8-15.ArticlePubMedPDF
    • 2. Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res. 1982;90: 490-496.ArticlePubMed
    • 3. Antonucci JM, Toth EE. Extent of polymerization of dental resins by differential scanning calorimetry. J Dent Res. 1983;62(2):121-125.ArticlePubMedPDF
    • 4. Ruyter IE, Oysaed H. Compressive creep of light cure resin based restorative materials. Acta Odontol Scand. 1982;40: 319-324.PubMed
    • 5. Hanks CT, Craig RG, Diehl ML, Pashley DH. Cytotoxity of dental composites and other materials in a new in vitro device. J Oral Pathol. 1988;17: 396-403.PubMed
    • 6. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42: 465-472.ArticlePubMed
    • 7. Ferracane JL, DeWald JP. A comparison of four modes of evaluating depth of cure of light activated composite. J Dent Res. 1987;66(3):727-730.ArticlePubMedPDF
    • 8. Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater. 1990;6: 282-287.ArticlePubMed
    • 9. Inoue K, Hayashi I. Residual monomer (Bis-GMA) of composite resins. J Oral Rehabil. 1982;9: 493-497.ArticlePubMed
    • 10. Tanaka K, Taira M, Shintani H, Wakasa K. Residual monomer(TEGDMA and Bis-GMA)of a set visable-light-cured dental composite resin when immersed in water. J Oral Rehabil. 1991;18: 353-362.PubMed
    • 11. Dickens SH, Stansbury JW, Floyd CJ. Effects of chemical composition on cure properties of dental resins. J Dent Res. 1999;78: 1459-1463.PubMed
    • 12. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21: 441-452.ArticlePubMed
    • 13. Gerzina TM, Hume WR. Effect of Dentin on the release of TEGDMA from resin composite in vitro. J Oral Rehabil. 1994;21: 463-468.PubMed
    • 14. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived product. Crit Rev Oral Biol Med. 2001;12(2):136-151.PubMed
    • 15. Van Groeningen G, Arends J. Composite degradation in vivo. Dent Mater. 1986;2: 225-227.ArticlePubMed
    • 16. Göpferich A. Mechanism of polymer degradation and erosion. Biomaterials. 1996;17: 103-114.ArticlePubMed
    • 17. Wu W, Toth EE, Moffa JF, Ellison JA. Subsurface damage layer of in vivo worn dental composite restorations. J Dent Res. 1984;63(5):675-680.ArticlePubMedPDF
    • 18. Wu W, Mckinney JE. Influence of chemicals on wear of dental composites. J Dent Res. 1982;61(10):1180-1183.ArticlePubMedPDF
    • 19. Soderholm KJ, Zigan M, Ragan M, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984;63: 1248-1254.ArticlePubMedPDF
    • 20. Soderholm KJ. Degradation of glass filler in experimental composites. J Dent Res. 1981;60: 1867-1872.ArticlePubMedPDF
    • 21. Hanks CT. Cytotoxic Effects of resin components on culture mammalian fibroblasts. J Dent Res. 1991;70: 1450-1455.ArticlePubMedPDF
    • 22. Nassiri MR, Hanks CT, Cameron MJ, Strawn SE, Craig RG. Application of Flow cytometry to determine the cytotoxicity of urethane dimethacrylate in human cells. J Biomed Mater Res. 1994;28: 153-158.ArticlePubMed
    • 23. Cherry BA, Moon PC, Kalini MY. Estrogenic activity of combined admistration of two possible dental resins. J Dent Res. 1998;77(AADR abst):1080.
    • 24. Arenholt-Bindslev D, Breinholt V, Schmalz G, Preiss A. Time-related bisphenol-A content and estrogenic activity in saliva samples collected in relation to placement of fissure sealants. Clin Oral Investig. 1999;3(3):120-125.ArticlePubMedPDF
    • 25. McKinney JE, Wu W. Chemical softening and wear of dental composites. J Dent Res. 1985;64: 1326-1331.ArticlePubMedPDF
    • 26. Geddes DA. Acids produced by human dantal plaque metabolism in situ. Caries Res. 1975;9: 98-109.ArticlePubMed
    • 27. Asmussen E. Softening of Bis-GMA based polymers by ethanol and by organic acids of plaque. Scand J Dent Res. 1984;92: 257-261.ArticlePubMed
    • 28. Choi JH. Gigi bunseog gaelon mich eung-yong. 1998;100-165.
    • 29. Lingstrom P, Imfeld T, Birkhed D. Comparison of three different methods for measurement of plaque-pH in humans after consumption of soft bread and potato chips. J Dent Res. 1993;72(5):865-870.ArticlePubMedPDF
    • 30. Chadwick RG, McCabe JF, Walls AW, Storer R. The effect of storage media upon the surface microhardness and abrasion resistance if three composites. Dent Mater. 1990;6: 123-128.PubMed
    • 31. Larsen IB, Freund M, Munksgaard EC. Change in surface hardness of BIS_GMA/TEGDMA polymer due to enzymatic action. J Dent Res. 1992;71(11):1851-1853.ArticlePubMedPDF
    • 32. Yap AU, Tan SH, Wee SS, Lee CW. Chemical degradation of composite restoratives. J Oral Rehabil. 2001;28: 1015-1021.ArticlePubMed
    • 33. Freund M, Munksgaard EC. Enzymatic degradation of Bis-GMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro. Scand J Dent Res. 1990;98: 351-356.ArticlePubMed
    • 34. Jaffer F, Finer Y, Santerre JP. Interaction between resin monomer and commercial composite resins with human saliva derived esterases. Biomaterials. 2002;23(7):1707-1719.ArticlePubMed
    • 35. Santerre JP, Shajii L. Biodegradation of commercial dental composites by Cholesterol Esterase. J Dent Res. 1999;78(8):1459-1468.ArticlePubMedPDF
    • 36. Ruyter IE. Physical and chemical aspects related to substances released from polymer materials in an aqueous environment. Advan Dent Res. 1995;9: 344-349.ArticlePDF
    • 37. Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composite and identification of monomers released in an aqueous environment. J Oral Rehabil. 2001;28(12):1106-1115.PubMed
    • 38. Lee SY, Huang HM. Leached components from dental composites in oral simulating fluids and the resultant composite strengths. J Oral Rehabil. 1998;25: 575-588.ArticlePubMedPDF
    • 39. Ortengren U, Andersson F. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent. 2001;29: 35-41.ArticlePubMed
    • 40. Braden M, Davy KW. Water absorption characteristics of some unfilled resins. Biomaterials. 1986;7: 474-475.ArticlePubMed
    • 41. Muller H, Olsson S, Soderholm KJ. The effect of comonomer composition, silane heating and filler type on aqueous TEGDMA lechability in model resin composites. Eur J Oral Sci. 1997;105: 362-376.PubMed
    • 42. Braden M, Clarke RL. Water absorption characteristics of dental microfine composite filling materials. Biomaterials. 1984;5: 369-372.ArticlePubMed
    • 43. Øysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986;65: 1315-1318.ArticlePubMedPDF
    • 44. Geurtsen W. Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci. 1998;106: 687-695.ArticlePubMedPDF
    • 45. Soderholm KJ. Degradation of grass filler in experimental composites. J Dent Res. 1981;60(11):1867-1875.ArticlePubMedPDF
    • 46. Göpferich A. Mechanism of polymer degradation and erosion. Biomaterials. 1996;17: 103-114.ArticlePubMed
    • 47. Munksgaard EC, Freund M. Enzymatic hydrolysis of(di) methacrylates and their polymers. Scand J Dent Res. 1990;98: 261-267.ArticlePubMed
    • 48. Qvist V. Pulp reactions in human teeth to tooth colored filling material. Scand J Dent Res. 1975;83: 54-66.PubMed
    • 49. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cement and compomers. J Dent Res. 1998;77: 2012-2019.ArticlePubMedPDF
    • 50. Hume WR, Hood AM. Comparing cytotoxicity in vitro between cured and uncured composite resins. J Dent Res. 1990;69: 943-951.
    • 51. Stanley HR. Compatability of various materials with oral tissues. J Dent Res. 1979;58: 1507-1517.PubMed
    • 52. Stanley HR. Pulpal consideration of adhesive material. Oper Dent. 1992;Suppl 5: 151-164.PubMed
    • 53. Rathbun MA, Craig RG, Hanks CT. Cytotoxity of a Bis-GMA dental composite before and after leaching in organic solvent. J Biomed Mater Res. 1991;25: 443-457.ArticlePubMed

    Tables & Figures

    Figure 1
    LC / MS-chromatogram of STD from Aeliteflo (Unpolymerized material)
    jkacd-29-249-g001.jpg
    Figure 2
    LC / MS-chromatogram of pH 4 extract from Aeliteflo (Polymerized material)
    jkacd-29-249-g002.jpg
    Figure 3
    LC / MS-chromatogram of pH 7 extract from Aeliteflo (Polymerized material)
    jkacd-29-249-g003.jpg
    Figure 4
    LC / MS-chromatogram of STD from Z-250 (Unpolymerized material)
    jkacd-29-249-g004.jpg
    Figure 5
    LC / MS-chromatogram of pH 4 extract from Z-250 (Polymerized material)
    jkacd-29-249-g005.jpg
    Figure 6
    LC / MS-chromatogram of pH 7 extract from Z-250 (Polymerized material)
    jkacd-29-249-g006.jpg
    Figure 7
    LC / MS-chromatogram of STD from Heliomolar (Unpolymerized material)
    jkacd-29-249-g007.jpg
    Figure 8
    LC / MS-chromatogram of pH 4 extract from Heliomolar (Polymerized material)
    jkacd-29-249-g008.jpg
    Figure 9
    LC / MS - chromatogram of pH 7 extract from Heliomolar (Polymerized material)
    Peak A ; Internal caffeine standard, fragmented methyl methacrylate, methacrylic acid, etc.
    Peak B ; TEGDMA (triethyleneglycol dimethacrylate)
    Peak C ; UDMA (urethane dimethacrylate)
    Peak D ; Bis-GMA (Bisphenol A diglycidyl ether dimethacrylate)
    Peak E ; Unidentified, probably related to Bis-EMA (Ethoxylated bisphenol A dimethacrylate)
    Peak F,G ; A certain dimer or oligomer
    jkacd-29-249-g009.jpg
    Figure 10
    MS spectra of Caffeine (9min)
    jkacd-29-249-g010.jpg
    Figure 11
    MS spectra of TEGDMA (14min)
    jkacd-29-249-g011.jpg
    Figure 12
    MS spectra of UDMA (21min)
    jkacd-29-249-g012.jpg
    Figure 13
    MS spectra of Bis-GMA (23min)
    jkacd-29-249-g013.jpg
    Figure 14
    Leached TEGDMA of Aeliteflo
    jkacd-29-249-g014.jpg
    Figure 15
    Leached UDMA of Z-250
    jkacd-29-249-g015.jpg
    Figure 16
    Leached UDMA of Heliomolar
    jkacd-29-249-g016.jpg
    Figure 17
    Total amount of leached monomers according to storage time
    jkacd-29-249-g017.jpg
    Table 1
    Commercial light-cured dental composite resins used in this study.

    Bis-GMA = Bisphenol A diglycidyl ether dimethacrylate

    TEGDMA = Triethyleneglycol dimethacrylate

    Bis-EMA = Etoxylated Bisphenol A dimethacrylate

    Bis-EMA (6) = Bisphenol A polyetheylene glycol diether dimethacrylate

    UEDMA = Urethane dimethacrylate

    D3MA = Decamethacrylate

    jkacd-29-249-i001.jpg
    Table 2
    Experimental conditions according to different pH and storage time.
    jkacd-29-249-i002.jpg
    Table 3
    Dilution of standard solution (STD) and storage solution

    *ppm = mg/L

    jkacd-29-249-i003.jpg
    Table 4
    Conditions of HPLC
    jkacd-29-249-i004.jpg
    Table 5
    Isolated monomers released at its specific retention time.

    *Bis-EMA (6) ; Bisphenol A polyetheylene glycol diether dimethacrylate.

    jkacd-29-249-i005.jpg
    Table 6
    Chemical structure of fragmented ions related to TEGDMA
    jkacd-29-249-i006.jpg
    Table 7
    Chemical structure of fragmented ions related to UDMA
    jkacd-29-249-i007.jpg
    Table 8
    Leached monomer content of Aelitflo groups

    *%CF = percentage related to the internal caffeine standard

    *STD = standard solution (unpolymerized material)

    jkacd-29-249-i008.jpg
    Table 9
    Leached monomer content of Z-250 groups
    jkacd-29-249-i009.jpg
    Table 10
    Leached monomer content of Heliomolar groups
    jkacd-29-249-i010.jpg
    Table 11
    Amount of leached TEGDMA and UDMA according to storage time (%CF), n = 15

    *: significantly different on the horizontal line (p < 0.001)

    ▸values with the same subscript letter in the same row are not significantly different (p > 0.05)

    jkacd-29-249-i011.jpg
    Table 12
    Relative percentage of cumulative monomers following 45days storage as to original concentration

    %CF = percentage related to the internal caffeine standard

    *%Sol = percentage related to original concentration of STD

    jkacd-29-249-i012.jpg

    REFERENCES

    • 1. Antonucci JM, Bowen RL. Dimethacrylates derived from hydroxylbenzoic acid. J Dent Res. 1976;55: 8-15.ArticlePubMedPDF
    • 2. Asmussen E. Factors affecting the quantity of remaining double bonds in restorative resin polymers. Scand J Dent Res. 1982;90: 490-496.ArticlePubMed
    • 3. Antonucci JM, Toth EE. Extent of polymerization of dental resins by differential scanning calorimetry. J Dent Res. 1983;62(2):121-125.ArticlePubMedPDF
    • 4. Ruyter IE, Oysaed H. Compressive creep of light cure resin based restorative materials. Acta Odontol Scand. 1982;40: 319-324.PubMed
    • 5. Hanks CT, Craig RG, Diehl ML, Pashley DH. Cytotoxity of dental composites and other materials in a new in vitro device. J Oral Pathol. 1988;17: 396-403.PubMed
    • 6. Ferracane JL, Berge HX, Condon JR. In vitro aging of dental composites in water-effect of degree of conversion, filler volume, and filler/matrix coupling. J Biomed Mater Res. 1998;42: 465-472.ArticlePubMed
    • 7. Ferracane JL, DeWald JP. A comparison of four modes of evaluating depth of cure of light activated composite. J Dent Res. 1987;66(3):727-730.ArticlePubMedPDF
    • 8. Ferracane JL, Condon JR. Rate of elution of leachable components from composite. Dent Mater. 1990;6: 282-287.ArticlePubMed
    • 9. Inoue K, Hayashi I. Residual monomer (Bis-GMA) of composite resins. J Oral Rehabil. 1982;9: 493-497.ArticlePubMed
    • 10. Tanaka K, Taira M, Shintani H, Wakasa K. Residual monomer(TEGDMA and Bis-GMA)of a set visable-light-cured dental composite resin when immersed in water. J Oral Rehabil. 1991;18: 353-362.PubMed
    • 11. Dickens SH, Stansbury JW, Floyd CJ. Effects of chemical composition on cure properties of dental resins. J Dent Res. 1999;78: 1459-1463.PubMed
    • 12. Ferracane JL. Elution of leachable components from composites. J Oral Rehabil. 1994;21: 441-452.ArticlePubMed
    • 13. Gerzina TM, Hume WR. Effect of Dentin on the release of TEGDMA from resin composite in vitro. J Oral Rehabil. 1994;21: 463-468.PubMed
    • 14. Santerre JP, Shajii L, Leung BW. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived product. Crit Rev Oral Biol Med. 2001;12(2):136-151.PubMed
    • 15. Van Groeningen G, Arends J. Composite degradation in vivo. Dent Mater. 1986;2: 225-227.ArticlePubMed
    • 16. Göpferich A. Mechanism of polymer degradation and erosion. Biomaterials. 1996;17: 103-114.ArticlePubMed
    • 17. Wu W, Toth EE, Moffa JF, Ellison JA. Subsurface damage layer of in vivo worn dental composite restorations. J Dent Res. 1984;63(5):675-680.ArticlePubMedPDF
    • 18. Wu W, Mckinney JE. Influence of chemicals on wear of dental composites. J Dent Res. 1982;61(10):1180-1183.ArticlePubMedPDF
    • 19. Soderholm KJ, Zigan M, Ragan M, Bergman M. Hydrolytic degradation of dental composites. J Dent Res. 1984;63: 1248-1254.ArticlePubMedPDF
    • 20. Soderholm KJ. Degradation of glass filler in experimental composites. J Dent Res. 1981;60: 1867-1872.ArticlePubMedPDF
    • 21. Hanks CT. Cytotoxic Effects of resin components on culture mammalian fibroblasts. J Dent Res. 1991;70: 1450-1455.ArticlePubMedPDF
    • 22. Nassiri MR, Hanks CT, Cameron MJ, Strawn SE, Craig RG. Application of Flow cytometry to determine the cytotoxicity of urethane dimethacrylate in human cells. J Biomed Mater Res. 1994;28: 153-158.ArticlePubMed
    • 23. Cherry BA, Moon PC, Kalini MY. Estrogenic activity of combined admistration of two possible dental resins. J Dent Res. 1998;77(AADR abst):1080.
    • 24. Arenholt-Bindslev D, Breinholt V, Schmalz G, Preiss A. Time-related bisphenol-A content and estrogenic activity in saliva samples collected in relation to placement of fissure sealants. Clin Oral Investig. 1999;3(3):120-125.ArticlePubMedPDF
    • 25. McKinney JE, Wu W. Chemical softening and wear of dental composites. J Dent Res. 1985;64: 1326-1331.ArticlePubMedPDF
    • 26. Geddes DA. Acids produced by human dantal plaque metabolism in situ. Caries Res. 1975;9: 98-109.ArticlePubMed
    • 27. Asmussen E. Softening of Bis-GMA based polymers by ethanol and by organic acids of plaque. Scand J Dent Res. 1984;92: 257-261.ArticlePubMed
    • 28. Choi JH. Gigi bunseog gaelon mich eung-yong. 1998;100-165.
    • 29. Lingstrom P, Imfeld T, Birkhed D. Comparison of three different methods for measurement of plaque-pH in humans after consumption of soft bread and potato chips. J Dent Res. 1993;72(5):865-870.ArticlePubMedPDF
    • 30. Chadwick RG, McCabe JF, Walls AW, Storer R. The effect of storage media upon the surface microhardness and abrasion resistance if three composites. Dent Mater. 1990;6: 123-128.PubMed
    • 31. Larsen IB, Freund M, Munksgaard EC. Change in surface hardness of BIS_GMA/TEGDMA polymer due to enzymatic action. J Dent Res. 1992;71(11):1851-1853.ArticlePubMedPDF
    • 32. Yap AU, Tan SH, Wee SS, Lee CW. Chemical degradation of composite restoratives. J Oral Rehabil. 2001;28: 1015-1021.ArticlePubMed
    • 33. Freund M, Munksgaard EC. Enzymatic degradation of Bis-GMA/TEGDMA-polymers causing decreased microhardness and greater wear in vitro. Scand J Dent Res. 1990;98: 351-356.ArticlePubMed
    • 34. Jaffer F, Finer Y, Santerre JP. Interaction between resin monomer and commercial composite resins with human saliva derived esterases. Biomaterials. 2002;23(7):1707-1719.ArticlePubMed
    • 35. Santerre JP, Shajii L. Biodegradation of commercial dental composites by Cholesterol Esterase. J Dent Res. 1999;78(8):1459-1468.ArticlePubMedPDF
    • 36. Ruyter IE. Physical and chemical aspects related to substances released from polymer materials in an aqueous environment. Advan Dent Res. 1995;9: 344-349.ArticlePDF
    • 37. Ortengren U, Wellendorf H, Karlsson S, Ruyter IE. Water sorption and solubility of dental composite and identification of monomers released in an aqueous environment. J Oral Rehabil. 2001;28(12):1106-1115.PubMed
    • 38. Lee SY, Huang HM. Leached components from dental composites in oral simulating fluids and the resultant composite strengths. J Oral Rehabil. 1998;25: 575-588.ArticlePubMedPDF
    • 39. Ortengren U, Andersson F. Influence of pH and storage time on the sorption and solubility behaviour of three composite resin materials. J Dent. 2001;29: 35-41.ArticlePubMed
    • 40. Braden M, Davy KW. Water absorption characteristics of some unfilled resins. Biomaterials. 1986;7: 474-475.ArticlePubMed
    • 41. Muller H, Olsson S, Soderholm KJ. The effect of comonomer composition, silane heating and filler type on aqueous TEGDMA lechability in model resin composites. Eur J Oral Sci. 1997;105: 362-376.PubMed
    • 42. Braden M, Clarke RL. Water absorption characteristics of dental microfine composite filling materials. Biomaterials. 1984;5: 369-372.ArticlePubMed
    • 43. Øysaed H, Ruyter IE. Water sorption and filler characteristics of composites for use in posterior teeth. J Dent Res. 1986;65: 1315-1318.ArticlePubMedPDF
    • 44. Geurtsen W. Substances released from dental resin composites and glass ionomer cements. Eur J Oral Sci. 1998;106: 687-695.ArticlePubMedPDF
    • 45. Soderholm KJ. Degradation of grass filler in experimental composites. J Dent Res. 1981;60(11):1867-1875.ArticlePubMedPDF
    • 46. Göpferich A. Mechanism of polymer degradation and erosion. Biomaterials. 1996;17: 103-114.ArticlePubMed
    • 47. Munksgaard EC, Freund M. Enzymatic hydrolysis of(di) methacrylates and their polymers. Scand J Dent Res. 1990;98: 261-267.ArticlePubMed
    • 48. Qvist V. Pulp reactions in human teeth to tooth colored filling material. Scand J Dent Res. 1975;83: 54-66.PubMed
    • 49. Geurtsen W, Spahl W, Leyhausen G. Residual monomer/additive release and variability in cytotoxicity of light-curing glass-ionomer cement and compomers. J Dent Res. 1998;77: 2012-2019.ArticlePubMedPDF
    • 50. Hume WR, Hood AM. Comparing cytotoxicity in vitro between cured and uncured composite resins. J Dent Res. 1990;69: 943-951.
    • 51. Stanley HR. Compatability of various materials with oral tissues. J Dent Res. 1979;58: 1507-1517.PubMed
    • 52. Stanley HR. Pulpal consideration of adhesive material. Oper Dent. 1992;Suppl 5: 151-164.PubMed
    • 53. Rathbun MA, Craig RG, Hanks CT. Cytotoxity of a Bis-GMA dental composite before and after leaching in organic solvent. J Biomed Mater Res. 1991;25: 443-457.ArticlePubMed

    Citations

    Citations to this article as recorded by  
    • Release of Bisphenol A from Pit and Fissure Sealants According to Different pH Conditions
      Eun-Deok Jo, Sang-Bae Lee, Chung-Min Kang, Kwang-Mahn Kim, Jae-Sung Kwon
      Polymers.2021; 14(1): 37.     CrossRef
    • Comparison of polymerization shrinkage of dual-cure core build-up resin according to shade and curing mode
      Yoorina Choi, Karl Lee, Hoon-Sang Chang
      Oral Biology Research.2019; 43(4): 243.     CrossRef
    CanvasJS.com
    CanvasJS.com
    CanvasJS.com

    • ePub LinkePub Link
    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Effect of pH and storage time on the elution of residual monomers from polymerized composite resins
      J Korean Acad Conserv Dent. 2004;29(3):249-266.   Published online May 31, 2004
      Close
    • XML DownloadXML Download
    Figure
    • 0
    Related articles
    Effect of pH and storage time on the elution of residual monomers from polymerized composite resins
    Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image Image
    Figure 1 LC / MS-chromatogram of STD from Aeliteflo (Unpolymerized material)
    Figure 2 LC / MS-chromatogram of pH 4 extract from Aeliteflo (Polymerized material)
    Figure 3 LC / MS-chromatogram of pH 7 extract from Aeliteflo (Polymerized material)
    Figure 4 LC / MS-chromatogram of STD from Z-250 (Unpolymerized material)
    Figure 5 LC / MS-chromatogram of pH 4 extract from Z-250 (Polymerized material)
    Figure 6 LC / MS-chromatogram of pH 7 extract from Z-250 (Polymerized material)
    Figure 7 LC / MS-chromatogram of STD from Heliomolar (Unpolymerized material)
    Figure 8 LC / MS-chromatogram of pH 4 extract from Heliomolar (Polymerized material)
    Figure 9 LC / MS - chromatogram of pH 7 extract from Heliomolar (Polymerized material) Peak A ; Internal caffeine standard, fragmented methyl methacrylate, methacrylic acid, etc. Peak B ; TEGDMA (triethyleneglycol dimethacrylate) Peak C ; UDMA (urethane dimethacrylate) Peak D ; Bis-GMA (Bisphenol A diglycidyl ether dimethacrylate) Peak E ; Unidentified, probably related to Bis-EMA (Ethoxylated bisphenol A dimethacrylate) Peak F,G ; A certain dimer or oligomer
    Figure 10 MS spectra of Caffeine (9min)
    Figure 11 MS spectra of TEGDMA (14min)
    Figure 12 MS spectra of UDMA (21min)
    Figure 13 MS spectra of Bis-GMA (23min)
    Figure 14 Leached TEGDMA of Aeliteflo
    Figure 15 Leached UDMA of Z-250
    Figure 16 Leached UDMA of Heliomolar
    Figure 17 Total amount of leached monomers according to storage time
    Effect of pH and storage time on the elution of residual monomers from polymerized composite resins

    Commercial light-cured dental composite resins used in this study.

    Bis-GMA = Bisphenol A diglycidyl ether dimethacrylate

    TEGDMA = Triethyleneglycol dimethacrylate

    Bis-EMA = Etoxylated Bisphenol A dimethacrylate

    Bis-EMA (6) = Bisphenol A polyetheylene glycol diether dimethacrylate

    UEDMA = Urethane dimethacrylate

    D3MA = Decamethacrylate

    Experimental conditions according to different pH and storage time.

    Dilution of standard solution (STD) and storage solution

    *ppm = mg/L

    Conditions of HPLC

    Isolated monomers released at its specific retention time.

    *Bis-EMA (6) ; Bisphenol A polyetheylene glycol diether dimethacrylate.

    Chemical structure of fragmented ions related to TEGDMA

    Chemical structure of fragmented ions related to UDMA

    Leached monomer content of Aelitflo groups

    *%CF = percentage related to the internal caffeine standard

    *STD = standard solution (unpolymerized material)

    Leached monomer content of Z-250 groups

    Leached monomer content of Heliomolar groups

    Amount of leached TEGDMA and UDMA according to storage time (%CF), n = 15

    *: significantly different on the horizontal line (p < 0.001)

    ▸values with the same subscript letter in the same row are not significantly different (p > 0.05)

    Relative percentage of cumulative monomers following 45days storage as to original concentration

    %CF = percentage related to the internal caffeine standard

    *%Sol = percentage related to original concentration of STD

    Table 1 Commercial light-cured dental composite resins used in this study.

    Bis-GMA = Bisphenol A diglycidyl ether dimethacrylate

    TEGDMA = Triethyleneglycol dimethacrylate

    Bis-EMA = Etoxylated Bisphenol A dimethacrylate

    Bis-EMA (6) = Bisphenol A polyetheylene glycol diether dimethacrylate

    UEDMA = Urethane dimethacrylate

    D3MA = Decamethacrylate

    Table 2 Experimental conditions according to different pH and storage time.

    Table 3 Dilution of standard solution (STD) and storage solution

    *ppm = mg/L

    Table 4 Conditions of HPLC

    Table 5 Isolated monomers released at its specific retention time.

    *Bis-EMA (6) ; Bisphenol A polyetheylene glycol diether dimethacrylate.

    Table 6 Chemical structure of fragmented ions related to TEGDMA

    Table 7 Chemical structure of fragmented ions related to UDMA

    Table 8 Leached monomer content of Aelitflo groups

    *%CF = percentage related to the internal caffeine standard

    *STD = standard solution (unpolymerized material)

    Table 9 Leached monomer content of Z-250 groups

    Table 10 Leached monomer content of Heliomolar groups

    Table 11 Amount of leached TEGDMA and UDMA according to storage time (%CF), n = 15

    *: significantly different on the horizontal line (p < 0.001)

    ▸values with the same subscript letter in the same row are not significantly different (p > 0.05)

    Table 12 Relative percentage of cumulative monomers following 45days storage as to original concentration

    %CF = percentage related to the internal caffeine standard

    *%Sol = percentage related to original concentration of STD


    Restor Dent Endod : Restorative Dentistry & Endodontics
    Close layer
    TOP Mpgyi