Skip Navigation
Skip to contents

Restor Dent Endod : Restorative Dentistry & Endodontics

OPEN ACCESS

Articles

Page Path
HOME > Restor Dent Endod > Volume 37(4); 2012 > Article
Research Article Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals
Jung-Hong Ha1, Sang-Shin Park2
2012;37(4):-219.
DOI: https://doi.org/10.5395/rde.2012.37.4.215
Published online: November 21, 2012

1Department of Conservative Dentistry, Kyungpook National University School of Dentistry, Daegu, Korea.

2School of Mechanical Engineering, Yeungnam University, Gyeongsan, Korea.JFIFddDuckydqhttp://ns.adobe.com/xap/1.0/ Adobed     ! 1AQa"q 2#w8B36v7XRr$9bCt%u&Ws'(xy4T5fH  !1AQaq"2B Rbr#u67Ѳ3sTt5v8Sc$4ĂCÔ%UӅFV ?_Aנj- H>>,m*>fzp"TrKkr^r.|_&]|*vPuܶvoQ1mwVJUhu-I"=LniAƕ8"۲ k*ҿ[yu:.vUQ+)%F DHyVBk>Hy8jݹ q~9D4KRmzQ)^ʔ.J%k_tVi5NTjg!'ky|5asOȻ)R۸ߩFMԿ3L4j6dڜ#NIwUF]JqB/(FafJRzq3\G՛ ?~\ 6)6W4m[O^L0E&rRMض*C .]Unl-1 1r#Rj/&QɈ׉˩s6Rj=5Tg.y.·Pӡ:JJS:C8-2u]d&vUz;7p9 5VnL֢"y)">iי(IDDd| Yj0; LRfS:ktYK%*N2^m|&dğth":ey)uPQZW)gcC3Pv&MMWd&Ŵ۲mvTRoժM03*F3Yd6\8,\hݻ kߔi<k NTwSԪmljj[>->ptU%'LR>&EBH$MQAUx[$Z6vi&_a.KIQ{hyƒ j"JOC9eFҝfj;˚Ω<[3_m% lQ@4g=5$(J]Yc-OMq<Ǎ wSzڗ)k$7VIP붾ͯnV+卵*t]iЎD31~SA1éC2u)ʼnQn-Uoi3:grI8ؓWm*G zܕ)ZקJ}Y YlGeJ6cB2I NS3Q>k=KTBT]W6+SOXQgGR? telˊ%-Re\hѯ2TF"C/OJΩ6r[N.0{SpljjX1“jOsӥ;ҭhe}xu`Ք&.)yO̒ Fߑ.$Qw;9Iw2o+RVJMSOj[SoҌZ%;`d$blQ{Ro{Imڌ>3egf\O֝Uzx"䢸g+mv%Gʆ:|V[N'&ס-ޝ'kfE|K,G&˳98Juin/\\Qݿ̋v~Ǩ!rtWU d|E߫R4d}.qPw*Ӭv5YEcn~f5c%MTMkb-F>5JT,})QHg%{("ӔȸWMsYyWNRrkkJr0XドnͫT}r-jj,Ŕʍ\Q2Ri>v$5!]"JB2WɅ)]VԜUc8i|.jeRO6^V.¸ Q&#|ܶ-*uOG%JAtRZRr]FFG\۩w+?'zչSѧt jz>KW&ot{7P&2D;&\\>Q2JzܗAKSfeNn[jRrԕf6,q,F1tRfԗ>vֶևj-&R'Zi2=xv~Elbsvm8=ӛ"ū񕜈BȩlWau[]ٷBߨF~J!|Ipr3R̴#Yp)={7:G{+:\W}n|Q#%)7^-h"Ƒq:M*%J&$T軨I333׎g_- ucBwwjp[6i25$̏bU’ٱRv?G\~#Iͪb7<<}Ezt" q_Inw,7-d,G÷%T* Wg1"䥱kq/A.,_KhqŒxwvo u2ۥۧ.bQ}XκA$֣ +K״ZUNmڸII{.v{5z5ѮRme[moyƾd~cRݾK'j.\i&/S6f|b=5: p!6i_ 4j6=.si˧eƾtS^c.Y^RJVS-Vi3,esi08?H$GvZgg?gi䤟2adw릿:"۪lkSN>q-4kI܋ێe̊qۅgDoѨ9; #T.Q;7#~_Ufstb_'w~Xw1Xk,vcOt._}v}8"(4Z\ۘgk?J?bm_c!g{HZV]Fkk%~gEt)b秴vΰB|꽸}mp~E6ݹv;7P٤v+ri*3Ԣ|'O14_~7nP{7ZU\Vű[ +7󖱅o#:ǥŬ\|3r%TJX]V7ez¨Y]lc|O3V! R zbJ'PnGqVJ"19WVeOF埜EaEJωqCN5Z g-9[S<$sUK5b|7sn\7x qmv##FF\ w[=-43$^ooVSiXօv7iB۴yg>]Vf"r$J3""32!Zh[K%7GvNLs+4nB/B{vlsobJaҺJR:0g%&zR\ S3T[&ִor*ⷳc3ʊO[iozW٨%$gn:ܶWwFBԹjHP&z u&F2\f;ipW73 [; '_̽b;vib!oec dC-tS__$Xs]l9&z$2/N>%'[}b{h/{`{Ji׉׏ YJB/X%}.|+{(S:qz]4_Kѵo`^tY_4S#* ^zvݾMr+TrkQ g.8Ͽ^i>ӈǙvix>$o( ^qt*&t1oJVu-ql5U6jCЉmĻ*"?JT=K'O/|=Vo}l0b}}f?X[?/\JSBe,kP8ETJ==?.p5ފgbU9}ǶdNKk—_$8̸͓ۍ8Di\BԿ-1v{FF]|.^ۅ{vl12׏z7-R7wE?\nh\jN/Kձr_oBw"N QMBZqe-m:ӨSn6j4%!hQ;sv'm4kcM=!8\m[M4{SMliۇ%eֽR&N:{2A8)THLK3Zj[jPBx#BگMf:G1\`edcʮ?|w(-̮vXt,bW2;.ιNHRR#YwTM"<;mk\.foIDjmlJ;vxy7o7i\,KQŊ9d^Mmgc L*.T6tLeIuOH3SJQ3=F/ʿ<9\JM6mN6=<{xkP!F1QR[I$6ُimXu2An2yԒMU q f[IB-'䤯jYm52&JG\zд\~vdg QtHGXw&1Lw+nDEdC1w|YJmvP)HZ>i0BPβә?R:QO["]I_Jʏۍ>QKyu^bycBq4lXF~l [\*N>-J6,Gq(Zr5h]CwYӤU~ʶߑ u*SIv%ZfJ7)! FS*s_\|IŸZ)J ]ܜi4"z[+Z,MOZ))}|Ʀ(RUNIII.S'ˍO~˨rn}M)xxӕ0 eyҵ7YMAB]ӣU:/ѭ*6bcwP͵ "+qēVjŹO|GtY4V j[mLV M -m>",B$ GD1~j6O4|LxnNmqATNR3ε|DŽa[fmn-ڭ+FiK7Pcm;r5 l8r{#-]'nrFh2ruycb;pW=njRqRJ(d mnpckNnʹ+6]tz~E=ʕ l ZZ5jSi3#47.Lcfe`9؏v囜.F\-UZ:*0_<Νu9Lӵm&)_3\^ҹ3"1n1v_|uRʞͫr'iȧN_kH׺8xXrj=\МH)V\ˬ.Xʸ oVRC}ySU9/OBY먌5 ٿwޞ)rw8Ӫi5*5ZΗcGƱ !ZۄlmpjJ -l <R̵/JAպZuq\IdUS 48wXJJtcg4cI~aqߓwŷrm-v)G7yS^7H^-\mŌAq|"m9IBnF㏉9[N+mmy/!KKۉ%n +BdddfFF6FQRN-U5;Sv'm4kcM=Mn)\qιqUd9F%",6MGdT%-+~ f%+y֛^3SrF>6lc(֪vۊN;g._0Sѧ]ETWرkQKzGe9ʨsKA"yC y2\[5 rԭ7Gk5Mzw_4sM3hxЊ'oÍ5jsub )ͪ~tR2H]R͍>̋m6=%(˿(Wrr-܅y5(ܔJ޺YunW̹븹NsqK ]/QR#"ZMDfD|43Qw|._ԡSqTZBg??O Ϥ)/E_U|i}2 9Z?¹0:x'3,whǣ?C y-A~=daJј&M?D1_PS+Oi&;a @;Dž7[ zZC"bv:jjMQk$M RԸ3uA\=wI.AwC"^.{?-\NSiˏ"b}T/}q/ o.1M}R%:-ZniʒL$SgrBW*,Mw'N\ɇ{s\j]VryG'8f`}'N<*/`U숻z CwHq18J+vԕKss4R53/&XTt1bZƟo\=%nO)h$rBi-nKĪ^ ջڜlwkYm[̑+/QrZo%TQ;TLs($2C:s.%+eoNttq۰kK7O0m_t_pZ1SsSM7"mevFZ[w -FJ*T*jФQRg BSu|]g:ɵzjqwmltL.e3sRMچkSmjkmWœިm++¦'tILk*բQ D,PB\lI[9{%Gb R6öۍmX-MaʉA931cs..G4CujQտ[9 }G-xwl)IQz j Ó"rqe&=]꾧֎c)<kӳ+0JrRR3'TnXi^xMF Bު*tIL.[h"2"nKzZe'ZV/RrNYz]8죝n]Ķܩ>^Ժ]u-7^\mZjܣ9+Rmn ߑv?oꋘ?&ƪy^N4o=3-ؔ̿*`}V݁ ƒPu8%$ ݗ]wt;\y\>='OjPIp/nJU8{϶FNMsf"ίNqƹ(+ ݮF2Km |jܴZs%zf*eȫ?]4)I۵nR&FX + [jDh(#哑9q9Eծj8noǕZf\J-l&Z˫}`ӎhyrΉn\űn]9pʌӣ"׮Wt?N4_I_~54#/my1Xr*척aS#DT >q ssΛW;3oUaJSRMDgQnt:Ql,/ ܷfRqiM Ȼ>Cob;A>ڦWقM9X~/!'MW.}Vrߔꔵ!5|iB(0-zF=}okڢE$^wW~nokY߮\6՜̌{i-AF*9)\t9IV6۸5ZUF6R$ŨQIq砳YUZ]eyv >hI櫥N )&l JulwE1GDOuFN2| }馥uC1rޫV+^gdb&W[4<^e4YW,d|htͮsUM)۸8:{3d{AѢ)~ \#J=NdƮꮓ90 |1K$v*?мS ]i$J,C,SG?/_՜pMSƯM|mG1V1$~K>CSvkuj=&) -,yLjuFHK{c駗.SOua;BrSqj-ۍZ#'Jys7[g2z/.u4+XV2VQ.ޕ)$"(%)#Z7suZ%j }BǬݕe)Jvz8zJf:hIN|svO1O#IEcۍjݽ:SdὮvu^@:o^5cs>i/VqmVm]ؔܢn6'vޑ̗J4Wn@OlKbX ;n:hgJ9ŻyǑz8f܌q&Y fN0N;[69 rbׅC2/#kE l&2~èMR.*%g=Ft.%؝e8<.e=Uv{~㻏"EˑnvDѭ͜Lu3u0:U֝$[M5<:oi+V4V9 6nXvx&_ q Qqw3W:uϔ2yb/(ɳ|5zQiJ#r|Hw#.W?4aDŲ\ugWG;Cw鐢K|xg)##=O.dF˟jMUvWĻsr.z]kPc9"]R)mkfOd*uYf١RsB Aîh=k]ʳUrrZsq`d#r$/Ը3o^&lRWȍyuW̦Y4QDUMJ65ƒ[+ygk XK_±k#y:8(TJOSQhJt2.DR}"5[) r)6V6u5k:eXZmv𭤔!푊Q[qQ}ҹLE- 8qIZG|UM4j}Mܕ[Vwm{} Naqµ"ԈM zOpKѰ?IAD3Ir0'/q1itoB5{%wkOBn-ۜduqIzYK60{+DʕܞqIt";r1mG/\/ym[6JƫR \L=S=OT@Ix[TMm{>ݾտ֒ݸӉLYIx>+"JVNzx||5rI?C{oz8۹e\R-^\A2F R+N9 vlT]"ۭ d)t֞i #E2jB@׵=#/N+!ĕhx}I!cM`ąZ*ŻɄҒ߮Y.Z}='/oۙ3IpW̮hT7cTSuz9>B}΄&h!>lӵn~j˅IvU.'v'CSZw8QK3G> ,J59ٷ+HSg䧎hJdzvwv-cvxS5[̊n~ؿ%ַX?O0\6ne 6kn9.ϯ} *h 8_QhLݣ7q +=XBҲ5?[[)+F`=4 }B,sNg==u*Nj9k_GJ)+R~GSPBȒZ:(K]heL=vKPӢwq(NrG^ثϣ?#tC?.ͼ[ۅo؞y#%ǛjVyLSw%T*s92JTM%"YkQО.q)gCͲn8cgi6j1MѾ[{9h^vƘǚםidfi.^RHmg&rׇz:}݃}xT$ضk'5s-狶,\vpbPD،=Okf.c#cdz2FK5T!&)|ntD<+OŹU i-G[EE*FDfeaf2QƤM\UG_{ǹm%\yrGy:.\4wjPGUJޕUV7Do\7Vy_13w;[?c]H\$IJ,*L]3b%L{y.JRKG2sq,B6T}(#nW|km+q5] r㪍bJ@y{byz,b踊3ϻJ,'^xd،)JVw#.Vټc''ÝպWtbRؒJz۠8!o9IۄS95E9ؔ-e9JR{dmnッ<[~n${~Њ$W?&ՐY_? #a.ߑv?oꋘ?&ơ|y^N4o=3t=~7!/M3>n8W홎2M`Qx+ z qy8%]7_~540ۦ彷]Wq CѡwkďyF5Dum_}~P(5.(X,K9vᯐ?leB9;Jhm#3{CxGE-S{;@Fz˙]=O'!ɿ]' r`:7'2bЖ>Iy,/eTy/V<.H?UYY{\^#ѣr9^7?xoRȆ7EoS_&??zϾM?(~Q-K&>"~aߨ t7Emsϛ+?;fCr)fY+>z$tIkjn_>vnrֳki-˹l= t;'EyC¥|/BLwBJdgjۛ$s S1|ɍV%JI6KvəhzIlBYɒ|0"Sy0F>eo5W)O+X˻u';v)2vVq۳kۮws?UʑBǴYO漪e2MIjPAک\b1)DDؚKm6ZWΨgȕ۶yjڳ 2ضN[C[|r@9Jfo<_eI7q.|cÊV߷:i.:$ȋ)1%%)ADZCEBxJ0MJۥy(bNsKM9k43IwNt.\%N簤I'.j|ƃ2$grBEٌ\}9:v*!n7M(ɽ]7c@XxƱԨ37īf62cTTfFK]9wntQHͮvٱI/f|j=7}\_V5U^+:uljSȃY(XI.ȱmo1甅jڎIZ2>#\*:gY|4k\8ZwSqtyA!+];бޞKծË¥e)#5ap.QK^8VdU{*ѽL\=qmjnB5>{ Ӟ`v±5 ^k&O~Oshɷ,;6nOW>u6{RqS`)S%jp\ipdEBLfTWy$GIYw~䲭J.1vSY5z.V>^+Ǎvc.I[R{QsNR3ӎfhd>y?UJ*}~[e\i5U^͛E]G_FS(Iɿ]i8:4zj~շsW,ˆsy:%O}iur]iF5~3M:Ӟ#N06)4ߧgdawIotiz:1r5YDZLHBSi;NQc44la=Y kQIT*ըl:tq2(է9VO4뒳܂~2rq'nrVZŦ[t7\oլfb/mlpc.I8콚q^1iE~䰳mi[dۧw֤ICfdFeCsg:i| 6擣׋* 96lust^{%99UNRvaMܽo ammi$em4D6DD\nA%$$#}۷/ݕr99JMն[oT޲E"KTaP+HGkŴj5TM5xƱOS-k`ۛkٝWz;{kS}F;~q|~^_|euwnE'pSupUP)V]vE+t =ZRaVdG6= *.ϼnj9:UɷbېmF_tޫgHjVS'śǕًdkkѻ_]Kv?nT>)^e=Ar1'3ԔILyD?:-^in):{7.؂\.:V }#뺾.3r̸*xbFM aȵz 6SQ:ײj[ 8nn iFMw rR"5M5I旘35f^j='j:nNW.ʭocZvZKV^ɚJ.cM1ZI7E'6rg탸5oZ=[m Z`\hbMUR١Ȗĉ):Jin!_7Dй+f̷eKҷvͨBPR(V`y6tw*MRΝcB.ڭTnc;P$8nFvm4(D(R#R-L -2:FP lxZKQc6I("Km%$E, 78uXIFA$RQI$JbInG]c[ֹ:ZM+n^')JmJMJRu{e)7jQDw~%yQl}BZujSSf۩QZ+Dzhd5o%BIc'GZ?}΍:>Ɵivז-%݌J5MqGWTVʦh݇ܟ~Օ_6 n'{3~mϬj'J11OȻn߃r Qr\3y٘+WӍ'WxEs^O3 o~[|7>]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%-(\D4h{UK&ӡn^m]Fݢ:`δvj俜F+) y[{{ 7 tu>gvrěOj'5 iRg[ͶFjGe n~qT$ci ۚ0oԹc*jL[sVWqj\ݻ&6"WoK:cnWmrv)o>66(F>=W^bf#c zzʞtپy%mՉPël e}J.\Zk4ttt>oEM=q)hJjI=ͥ(%]脼_88ф;͛gWG;Cw~˘$4=uWdĜTثNDkiQL9U*O"4XP`02,Ge-k5$h>ܼ]3vr6!9RQPIVSnM(ۓ{>;/Qͱv{3&-[rc)ܚI$n{Sv3[j00)-D3z}MRzVQпj,T[uVs0\}Sid;r(ݝJ>æʺL&c[jPK0~d(FKÝW\m]GTcF|Iׁ)I3~#oX%vҦEݑؼ5Żv2qAZTE^..M{ʐfȏ2##.R}*KʛZz^ӞN*lPťLf\G6[WVQquV]XAi)5J!,$iJ6o$tPZc;Kjx_n3`qIelV~vLy{fn匋Ѿn%;zV.n'-ұdd2߽1bZksPe3TI9)$ԩIN9Vơ\=2885N\ p)/a柛w9g_lױo8ݷ iixJV& ғRi{N^_oAŮE6Y7I$Nk$|Q)-*4Z)^¸%4Qm [I%.c-OV+C֧R#%ѨCe3i;w$G+_dy| Fzj$DI(=OA gj%v/]8qԯNIS*֩',Q%\44ZZ%D|Ǧʴ6&vֵI$%8(ԬƾS&#Z. }6z?b/|Jl{ץv&mpx4Z$”ڝ4-H%dGKfM:sKSRWeJAn]>s6应-W9'H]'uȫYvgK^\czp|My\鏩w/ËQ.)]\QiS`8uL뚛̸=J"ܻi\å'-)54Ue]:K\퓡vK xwBqrH\*֕TnzC.mT=t-H]SČ~Nu╏NÅ3f|͡G~B+Xm[Q7U{9"~jgK Zoʰ7"qJ,ekSeNGgϳ] ^.6:s}_,%eRg<5⿨z{ZPun#jRІ.6g T.!]xa c#jN$Zpl̋H WZu8WmMRýsĮ?Mco~sx TU҆Q :KDG4n42.<3/'^?6/ܠڒ^yrrÿr2\D}}B]^E~^T cɛ7϶Y[<֞[7d}2%QPqOLEQR\CIsj1?\}%tJ0e~ *sk"*)&ۓEi#{1J8Hrt|'ܝRr8)=ƔN'RVz:cf]F7bZyZUȘ4x8,#JG̒?.W9XnO]KO]%]ƻ O5Γ/3qÓj؍/r̺rƵ 5\&m6h.xoeX[=<3%< lZ"2h\Z[&jW3ejm?k&[]ųj+{N{66leu_+lj]q* 7g*knأYv= q ەdxЬZ|%GUrQ3jLŒqET]1% qkXYūYc[7Ś]QY\jko\</Lc7+'hMSUc6qXyؙ~6#ѯv.0$BQi5YyIhɍiy=KD!n3Vm[V%W-B%swa97ajۗ m+9~]fKq|Ddaˑ0A]_v޺mM5* F-BYHJ5}q>ʉ.6hyDmpD׬'-_v5;5[8K[viJ.3dR:oYHHh9I7:۽fi+wm^ [)odPѱ52CZUJicSw\&_s0uBȍh32džzQflcd^m|7GѹE!fO5]]H9݇ZomT@]?5B:Z߂'`V_+/MSKX߆ޠk3?o7y:4R/7þ] iG߬aBRU&?r&/} cQߥGj2?C5Yśe7hU=?+ x龳f-܈czW^7p%5|Y:SJE\U-(a_cƣUǽXXKiȞNlmۊڭڄR!**ܤMeȽ$|X5(Ź\rJ~ܮ]>'HB0cp XFr_c?f?7<ukSgov¥iG>>䙗i.+t+bOjIܶ . i^:nm}s}(3>NZ$2Qg([".>i.ƾ)B̋M8+"- >eE6DݥJnJˣt׻ 5.˅nJGwZD~!i۶a,Db3ZQ3O#KO5/֍ozuK'GbRi᝘NV_ҝcvם ZoX}F6z 7e5_e:ۓj=AB+iܔERadMBq*ԯ DwI/Gy*mĥiRKg6skY/#SN4e$-yXM YL?^ĸNNӪ{$r1JJRSLO]Aqm>V/s[~i/j+m>z}eI"Qvp]{ZԼ:{vPAG2=T͡@ڐ#u"E*>C;o$~C#_d/HBq^YRٽzIKbOm\~żjFFGdiQ(*/i*#.FF]©m=BmpQQQSP&Ҫ!T&^>:y)$ˑÐFčI Bӡ-t!bM WҦŶ'UZ=}zvn~oT/\ǒ'nr8 AJIӆz<^uߖ4eFC1i+v!3qNyߕni?4JZlmYFXFۼO0B\m[ tʄU3s"Sr(NJ;SKW72L4̏BVdf^Ҹj\]ȱ۪(ӷm?J-KEmWڽ^4<8qu%9pŹW~877ܾeVгS(յe^C]yX͹! םm4FGȋ\y'Z FX7e)|Gjt߹#gb\ŧq_([R8[qU$Z (ʻezV2V!iQ,i$JE˂٩ a(GK'O{vnBvryRd-RK4=qxZJMl_CuuIz @Rt㮽޳!|68\-l[џ84-2Pu" RJ_^OL>G1~XnBŬw6J0*Uvlږ1N G1q9IUm*'oWu][&UyYZbBZRZNfEJf"+2nF~Eû7n1xv.RUM$6 lAxSQJ&n5ܞwlEói"#>4׿Q.nEq7Oko[1wg8ZQwZYiqtm&~">Bo?w͡ni2峋NCEy Ҕ+%ZJ ʩq*fpˤl,~^Mχk1+:ݕ z&Y`KLӪУDr3[*Z :(SL&ݻ۬Vqsyԭs x|iI߽zZrg.:mp%6ԜvgmpIUt;QbS.Է) ǨKSV,*lڌ|5Jt3#NP.=+OZ~/G سIgbꥹJnl_DUM\iM!֔wVZuԺ,yV.Q>f v:݇WiaŸN5Ҕ[M7SsrvǣrMW= \8ZW-jsnڕ.ZnF2qt ً[ٻޘY۷Zm"Jxr&NAfA-݌to9s359݆mZ+N1-qS$D=17 x׵+%_ ve4ir6Z$FDڗnFtOr'7'{9C˨ꤡaYoace{Refnft RR"4%ʌm:Sj3)OdInTO>X'vxV#jܮw9Fog;5.~Y5\~18YQܹvj4+~t7S ﬕs %^۵ڴDZV69R^Y+rj$ԇoJKR5wB9C>Y:l+EǎS{ʲ{T6Wi* ^^9k/y/Cs\g*qڵgn4T8mERr|Ti+iPe;;.i\EBEJ 丬i9ɧM-ԼsGDrZ>r#R>~X9y4b棇9JwV۔%m(b[Tjvl}۩~nDԺ{Zo-YuK1vx.nWuO+jN [ٮ0%"΢CdTJK-RަH"$I(*ve &҉FzB,_Vpqp9m8werv')E;o&QE׵^d9˦j\_,ڵugZȻ̧8k+jK{wmr@3ӭ2 wFkzFVqs1؛.v'I%$[iT]D5Dl2 nk7qUxԫLS+sا3/ΖeZYK<["%-g/kRs:f3;*E ت wJ%)5&+&rw*霣i|sMҴ|;R+fm䡩.!**dӶ-6s6,]zAXMWjmnz%SJߴm2UXw7MQ%<!tKys#P,W>s;3IYwx<+i_\\\U6 u7P|xbn_k&ӓVOe䦒 VUr,-㘘"-LZeOSҠթrEvq8Kf%5%&K"#%vD/.ZYYŏ+p$nZkvއuW9㓱Z G wYIFyf)?ƎUm5ԉ/'k84{KO:rQI}XRuԪ|*lu)3qZ[mSm5R3".Xcَ5c®ࢫI*۳~wRϿQWޝ(EJrri&ۥ^ʶ齲Im|[yb;mnm֩uiܘq>E+Ikx߄3r33-5𹻖09ϖ9[Tz~mr5NsWl$oPusޛ^{Z;);sڹf\3oٹZmԉ/'k84{NO:rQIBø8Bݱ3n֤DiK4u& ofSȒܩx<˘|N0Fչ]qsp"}! QWw@t4ӭ+cO5%]'*{eM߲DRO1y*q8w++e!c߶ܪlZWّM欼 CQ̼빶lX{vib/V/ ai;x6~]+z]MWB>re-:lgk}պ!#9?%܋V-c[z!W?c7YNm/jRr[HOzԻefճ0q15Zp#rkQQ0tU-AmڵP/cȕ?0cZYj;:0ZM=D6g ?'UN+ձ[K ܖB2'xq9{|۫N0ku 7xaj;n\ 2[VznMlWiKbSk))f..)Km)&bGZ=>OR܍W:j'rM'wYz&/鶧{Sʵb"vջq[I-ՌZH._x*BagC'T(Q:$ͳQcMCKy?3g'ߝqnT);qs #ؤZ}OOI:cfnc8W~qy.;^pVl]Hԓ>^H^@7-AA܃nmL(uWܻS߿ Td95Bdh4t6*dDh!EhI[iŨ\L.&Nc ܮf^;$R)\rip9I|ٺ?#R.ZDZ;/]nݻqs\QE9M&Bd ]N mN*D>tgbK>+ˏ.!23]BȔR1ɝ^j'k2ƮqBQq[$di]icV/e`޵B.FIIJqbi>Ӥ|p; 6${)RU>_e}^dzdfzi %ekRVUS?6'hׂ)5.\+qUgzE2C˷ecŏ^֔ibk shesFWJ#~> Wk~ݨ}ڶ>ơǚ)׽ZƉo~B-ڼrvoE:Ʃ3ۣK7+Y`WirS):{>ڛ}:wԨ(J_";6R%[u&ƫdZ_\'np| RJwNeTW,=rrbnkڄ[M3ܴz)3- R.?:okۼ0TU'w{6&w7j1z3ON'fGoO?)S_bQ_¿R(^ԴԴG.EtMڇ&RUiW uQjU> Kiu1d<ѥIQ'RQ1:O/lŗᏩiʂv&Jc{D5 Tt)1.n[n۶X}RjqnOʽ(~[Ns{ސ⛌uO,kgo֢dRNQȄ .'6W!׌P朼tdZjFGE"]K@'i۪N;sI[{SOzk>`rRR+!σj8&TjlvA̷Q?HyjyLHNտJMjܶT۽lG?SnKN%<‘ nq[N0Sq[Ta(&t(|HGO~gvkݻTR4&Z$#ViOY1r$6YF?e4U/Mvxų:zbU^gQQ+NW_'4jfz^c'#`rvrڡ(IJ/J ݦ6 ]-CW |_{v*_q3^DZ}Ic6Uڌ8p7{crZq5ki`)mU6|-Z5^iEz3P=:Cu7DF'k%}<C-޹ֲ̱#\,(f88%X-N(ck0VLR~} G"-8ӏ/ϰKq?(#nrVTmZ;zióM4 m |UT'C^_1X.gXM{%ʤd 4\ovN":"y-,T)fLQgۢr=/CƹǨJVr[a+!rT|%Y\ٱzsS>jͱ.oOc6f$q% ǒGo;n[];ߎjrk{~\VۓNIGn:iqxo |~t5)Rxעri{Vi&NUOl_ѮMfsޕkЄay.0P{7N((BaIP$ K"U6Gl ݙqJRu+qN$ m#*p<|{:>-Ev=86N*MM긭U*uѾ?/^o7;'u,h4݌xښRM:5.(/ \իU.{F^rmF-Jɷ.>Q"[4xT^OZ~mK}T0ݛ^SAo9u?lX(' qj%=X}"^e4wˠ|rܫ 6I\Ķ;Ӻw!'ڍWg{ i U_9Avhۣƾ+:vs/MK[ɭīe{`Zgb}r[i'GE2J7Nez579wRq+Un ]J.cJ4M:h箽Wxxm^ pc\wcN%'My $$| :$Fqɏ¾^қP9J6Wxvu}ݵP>Z'FFdg"-; [¢cmWkÎT8nG%ݣ7*\խCLRYZͤiD&J#'ehbSyXK|y*ӞpS̍R`[pTr/Eg)K+92{_ n3zwz'oŸۤ+sOj J:`T>Cf*lwd\fYOP"R E֢̔L4ɥ :;.b(B02rJ蠟9>V'9M%)IqnhP<%,r'P/vNSwr#w"ݨaqc(|{kd=^0jTMR2ULNz|.<|^PfY22##!,K~E BEJۜ&jRNsHަޛg\r,v؜.jK3)[EJ2ii{KEiHP^&]Gn8x=K}Wx/KI9-ϵwQ%spܾ[^R}S3$qvq8M[ ozKxcqmJ/ӿ{_}7&ݨ\f6ZSyQz& 7ۉ[8~UNn|nkiTB+4RI8'Nc%tn{!]Ȋo.nEmʱn𵵥J A+wy#+ikǒڂ;՛s85'KmE:Ђu""Iģ5p=БbTY-ͽڔ詻ngL2Q}$de# fs^o{DUUsfwӶ;s1T,ǤtޒQ\෼J=.tKU,7čJ5 N$y3kdSMQU~mO[03 $zAڟsF5^뜞"Կ QHmrR"ӳηer+ҔZ]hE-6Jmt'ޒ=O[sQj)6K}?e4v_KfZheޓ=BV[bY}lݒTTЬ{ȫvO_qpRApVŗ 6ju=*BR)g "O1yhb=tqJ gtm\b3RY+JQ^Ō֍\յ\>+uSi{=x ^w;uӘ#ĸzLn*$anok߷CBӷ}5Yqvdž<( "_OWit5:EZj2 B ρ1̊fi[n!HQF82q1牙nqnEpT(2RMoM4ϳOu ':֧_Xjsg jP^(ڙ{2%E͖j^}ZU[Q$'U) <܂%!s"m R'G5M0<+zM6qYm$ڕ$3ǧH]?o2N<8F1̻r_my[Rf59NjpzBnl7*{.QP 3N&^BLJPjAHCK2Q}$#~YMq8 k(MFMU)8MEqTy+Tʞ-ar5yܕOXw!e;q-Jqܶ䓊Y:LC UE{/t>r"lI9)3KJjϤA 6SEE$d߇3KG*En|P\ԭTn6I-ƍKTj<1H_zwGr19wF N8ݝ+a9ɫM6mhePi%mmD! """"""*1bRKrD"vnrM۫mmĽm]ӡiG~e"˩ lhRTMk^MX["Jݱk7_ޕ*DqĒ&flՒ}`W}~SմZ{ĕ~wm*/{{ѹ_-0ط#P]xlڱ~Tn5wi*lڪ (JxioϏbqKYR|!|KN53 OS222$jzww%i}>N)E+rۥ7c$Ofl/LNث\6H9: FY󡈾I)fB֔JI_ ֣^: 9mY{66㒢7Uj]:.-os[R&gMF3˸#໹kmjq^8W"PΦURjʄWa˧T!͋ lW48JB2ko+ /Nw QwQzQ ے%$ޓ7^YL|r7!v%Trܥ &|M8~ybrn[RV gSn{{*#2#ԽᢏӴHak" ӌcwҜw&RJ07ױ>Ļ =^ BɆ)v32.M1=#6%̠tҤnzqMwԣ~s*%-j|_m*.Yx9Sz=)qE4 3pk+,`=kNRڥ=B=nŔNAx)Q$ԩȧ4z3t#Z2lҮYn$S%y- JzGpu|LBV7ZW#;Wwipܷ%(6jFG5#{$D"uۭ~]֫SrD܃fҎӾ+Tu>-ZTQ& N|$沸ii>eRWݳu'[O̻j8JۻEѩ[]vni= ڒ,[_%kC7I3Nv$4ɎЈeٸoUu:[}Do5|zNq=Tre%ɧ6&~DȍF]ƞG5q m]/w/ \ʲr8=oʔe9U(W"|S]uZd#?Se[W"ֿh][-7Nu:T=)R}.;ml*5Dlf $fF(̏T hiIUU4Szɕ t(%_|2 ~6eM;TƗK[f&]LK^CE2[ȏBOd;Mi|cx,^6;sیGpQ\NuJIFTJ~đArh* B"$H쉩eXPRj?sl"ԥ)su]xpԴY%VESH"ЋJǰ K&5^Ukzׄ8kEgS2h&Se\ Yl]WҶp-ZUvi7QS:4byqOo+[̺腋[6-_Fo.6[7$p&^ _GZԸߍkc.qqoI[9m߸YxOZЦ1uoiSH)P9Uʄjcq= S>֙NeR><;+ڌk%_qT].srNO?s[=vH[]RZHRMtᩗVؾ:/~u)ԍdg%=edVrISb{6vSu=(ܥ)mTv/J}̇8 S3ad:^hBSf؉OɔLhI_1d8,L><_A0y3rXq"'(۱;mFNII.v5_(^q~X>y{3צ I*Vܛv/jW' T'NR'j%ꔩ:mJ3SB}΋!-H-RJBТQoedi9tjENenPpke.%4]#{:>mkEɱdYWl\\\'nRM4&U>?Ќˉk÷!𴪛]]5}UqG~ݏI"O~s6(Ļ)qO~h}uԕd}Q~G,oE!&G&/]_H-O=o{k\̭bkv.Ô܈+;arZx)m?M\3lU$mk-CFXjTv6u' g:Vn_*qk:VC A%'4JV%EY)#BғO4<e׿jQQ]yUr4=wm[K1r׵%Iũ-O}|kC;/VcݩWZ)EHdžTru]8hgĵ-;=>U_ InvTm_jBM+QiF"9*{DI/iuo(=TzϖmPQl_v4z>T*ȴ>YF;ε\t]EH4ꌇ[VrLzef 2T^V>g2~kg5~Nק;{~Z~W}&ŒBӿS2$J?~(Yœ"˲ߩ\O]: J׉ښT{mmIѩn3˧)4LdFZ/zUG>U> n 5& ϴ-KJi2o]uKljvK3$bԔҚV旧iY5.ίfi96v7!v))FJM4{jG~Jt/lUE%pTAFe4qQk\ve۽/u/Im+W')v{\-E|Pms7߮DZRr۞/mu*1ՙaB܆ -xg3#6ۥtRogʌU)׎]ZҞNnŞr}F1Nnޞ;cZ{N}ۿMiuxʉ*3qi'9KHQ$WJxXyرŔe~[v5~/jN9Q4o6rJv FrdxM*iRjMzUinHdн7ᾞS=S'7 } ̽zt7K|_g J=Lq+/Bw_\ۧx\HJUPzQ<hqF[V0x==CsU7q|^ {)Iq38$_A(VgcKu06Ƅ"%i~_ˉk QCܣB8Ku/񋇵u([w}$F|8TՠI.E !;RJ^}MɒD_q2];Ɖ{5}*n7nEInO{Mwv}&q+v [V}Ĝ@%>#dXQ$f;iep.GquixVt x6bj͵mlKقQ[T]zs/&yەnM'W}!Fp_d^Tu N{ɻ'l{խ2.sTu{W^H&;1s)Pӛ6>$mě;Łnj= fLT)>׸+qReɴ[UR\L*P/!$Ӊ3Q 'K=m~6XqW3^W+ųO_[F$rR*u"T%@O +%# ]˽!aܽz{ͷvQh쩎]hGތ5ɇ*DzJDRNLi 4:{~2FmXY-zzĽ^f=]uū{/+&c:Ma{ĝDp2m܍kHș/(--m_vݮK(V{R}.k&yƴ7i^4@3f sK3^Ř˸B=]?gt5KbZB<e;kQLpxuWC}n 5ҴepB##~q= `x]KWF {GfŲ}?G.I9pjWkU]>={7q{kO/^I3==f1ɏ%nnʫ/Zu_yXN<57ۍ'vy/"8넭M2eԷ&Y,в33%IkjMr7xf nmQkX4踼>a-GcIeތw&U=-:qnW)z¥j :WqSZvԒ#j"KrIU)%qrmRoDGQ~SYRsu*V)  ,/x)MFD6O#]z 96[Ui(JRfw'y$GeUީkdMF-ݻ98F2d[o{Rn0n-xsV6Dh|Eb2E:KCOӪv4SJCr"J!!m,hRLD| ZYFm/X~ΧfrN&4Ƒ=Z9Mh.Mܵw/BdrܥniŪ8ɧ|y%œ[M=_tj?F!z5\evM:\ ~F-sg钬OWq“iiȍ<Gi%%n2rqͻllƑ)okw7}\Uk-:&fj솘XerV9yZuʼşdFC=rmo%~ZN78X(N)_7.Εn1MpJ}62jjJdI";R5&iLԸc:jmqiQj$ujp\{;v5B񥍪Xn Ą4qOERjzN(Ga٠䌡)p*v(J7#ZۻZ8O W uONb+^Qipv9GvֽƼϯrYƖKGJQDNPhRJjᡧC"21"9ѓS1;R_O7/WGz)8fE%F2ukmvSov/iZ&/]~KmI[:^~ͤ\kMi稜\ywJt3W7 8Ʒ~ݥeFgѼw"8VVSج\뻆}ݭ/J6Q)d|)zU3>k\L=;ow֯gN3pKѫ|wmkZ$z^2R:E)f>ς нd|#׆?\ǔpV{;\$ƵE%-ͪm0S6[n< kE[}mvE4DDZ^$OZ0*$~XUv҅B@^?]so#%ojw;Y#SxxueBگy v^i-)s)zV jC{7Gt.w3v,ygg8s]aE_,*E tY5k٨h=o"m泏:\6w噓aiL׎n^c\75AGkЯ0Lf46َ`egZ˓p/k;̛]kq!ݸzpԭG"}R9Ve>ˏHUjJ-&7nrnwG*Xv\˱/vN}O)ʼn&CV͍f̵]r\PMB-6Du-#RͰtRN^)mT _}nSȕC*_xBuTkJW[`ɩ`ejvsngP ڻ.-WUtܑqԹQj)t;vN&RNũT+8%IXӃ5fK՛-d9 ]CƑm|nZ-6=Hz,*aEm W3VzRšdY~Xf׀Xx"]s;)5u*ُHB BRGS6bݶؿ 9j[1*jױga7oX CUI%0v#~\-O-Ꙛuɷ쏪&5mY٦M`LJ2qK~HZbr =N'YobI. (^ ׾{_ ?OJ`S`3BN[}5w6:ǵ/iSlt=4F*d&T4y/#. ɵim5Uֲf 眕6Y7 fơ=3dϕq뚩$qTM-%r!$@A? ޾V0c~{[{;򥧅a~ڵ»&ڄv1ek=wb MLkNAԬw-x>~/r=e73VeVN)K%Sښe"+3uXuچrn ֺVzscJ峻m}vb㶓n\YbIUBT%*,0nov=;z꣓S/nSXSpl##k9mXGrZv^Gde!ŷRԠzQyjC]`gToPov{j~KRBMY}i[߶9KL2ԉO0K#m>wB[ٍ+n[[b٦DX ݲpo] [\m5qdT()mo4Oy9Ie b][wղmM~vmi۱~t \}$яimRk(L c Cvk7r9_r1 ;zv|F@KyZ[&jEji/"6$69ml#e]9s\{ScL}Ȣؿ0q/nZ*t,CLoD߉Njǚy=Pgmu6^]l-["çUʖMlʍp-"qmU>۷uFOJ%Ǔkx 'g=睋k[3u,{³WɘݪF]ՍeFX"Oy\,cچ=w/gn Ļ]#2? vqy-gXnR.^}ݺFs{ŝG]}e|#0mjx"ƬWكm?rgU^xVB":Dt>@LRbun~ݭ,w+v⪕;\U(RYa61>#Jm˞Μ9g9XKaG='u8gf}'qy#ɉw J]We.ʲ-<+&q%s?2dњztҼn`cΤmmqMdz O[-ߩӲ&;[tmܝVnr">{x<8U+p:Ig]zjGkt,uzf}dؠoJaکqEq -(:d<պ=eKy[˗^%ZXkX[C2߱\ITTLGzANM￵i]K>UsOGDDD.ZF6* ҃V Zhz{'xp^`wo8r0h ZmJ5"jb[l=yUu7-;7IT%:jFjߖm0tzU'K)څNۧYJ)4IQ}^KWm7kSP>q;ނ#)'n7&׊r?óM{IwR\j2Qn[v pe#/tAF\ϵ225q֒om6z})6҅*oqDsMf CNIN=T S2t,_ѧ}kveMF0J\Rnnݙܹy[rUc-j{yGtkQ%s]5qB.Nw.JN1LvR Ui5J ZESQԙr):MJ+g}χ!2;q([jAud][ljVK3$ײSJI=/|&tl'*n۽f.frܥ jQO8>&Z];.|7T/C}$ڋUmP2Reҭ8hFF\L 3~e v\۫]ݝNmrnB%*]Z«hKc=BTLG :V74$=Ǘy+EX'4tn(I:Ѝ;Df8c,k1%dJ6.j6ź{N~l6&*fœI7 WAlGOu-ҢH,,(ǔe뿋쩨kM܍ZſgRvQ' 9)?n|er˭|I|-fGK.rΛp8XV1%K6mvG+tc+qE&ǸC_Nm:l=_/m5^[dߌڇ.c<%:)tQ$Ow~-aY;UJ>=F)2[nk؆?훐M=l6[4(O.]2#-H^n#->&mp5~Fӛ+|| S,xag%qkEUzUgæBhߕP(7]kFnq?֖CpruZ6*rEڊtS|*tI*E}7R<,nUU֫^I7Q*mSly%rdȓd8hE<9oHhMfNSRj[i7D[Rj݊+kდq{"$$H?p\̅S?㭻;t~R߁)^/>Qj`yt[w ԛ;²~+ߔ_ YW~|o]?x^ᯛ `ʼn;g)T@vWn]>&4lp+$D̢1l|ȨF%-}.9[}w~ ԠLM9hСablfe&QoW!s?wjLK?s7yO>(=C~_nyǜu?v3vyo oI@qV-jeES^[9WoSܝh"l2C1a͔CiJ@3:Pճw=/7ovuk+\V;lDgն<[A+rX~d;m!_s8ݖ׷;;.0llUC+?i#_crʙ1~C.\–q ul8Hܶ2m`ܻM3Tov|Bs rɵ"oLS- DКw=Tv@f'6|YlD͓Y%׵-#Ѯo%:&!3o%\J<02;K87>^vgƓ# ;ݝmz^Y6=PS39U%~ &f# }o!muH;ʲŇ˷yvP+&.7e[3'vR4Yj̗IZ`e˽3o[WU{ m[sUbۋZǾۆl6~9'V*.\S2<Sd*zY[aŶ`]C$n.v^Ʌ dng>ەZ,Mmϑ :n6nϦezWqUJ4! ۇ4R! =>>Fn|Q[{pRO17ƕ~._I''00k=b՛o}Osðc2'o\3}ݭQ^2 . R1yKȣtAݿ-uܾw!`?1Whn|gzUo[ECWwjUIן)^h#1ɭ!/Z np;o;ΗŻkXs."6E`Z1 עӐ9Kl8qd q} 2Stt;#j>;խabONŗ=fwP1j)l6J̶|gV2`y/0E˛6+ԫ1? 6}KW c\KoKͨ2ۅFw–s*TԞLיuDx .kCzWXhy۶gLu|%TnupǺl-S* PRaLnT+c+*xl.v!.U=|; !_L̎뱚U=4hm:ٯ"y)$:>%(n}X'p[ȴ ^˒4kƓmzDx \ 'NqamP7nyN݅=j7%McSڵj%STy qXymvCg{w/w=wSW5r̹u erծˊsOm=DhEҚRb#n)QOxtվQwe]I}wCa'"[ۂ-z}2UuKP$㜉ԧ:mc<Ý>RoL?wu|%ҷ&K y_!y9 ??:tq3(UU-lkS'ɸ@jdzQˬR] EVPW1DJq2n:,c|ǻ̑;y{X,ۂ.u.b˕u.tKBjQ"[S園S`ٮdNبeJ&9Ơ ~0a(Vm٘L+Jr*vڑE( x0+tp˕ n';wm-ޜMOxX>{#2%jgb2M[`K*\5@8l'e=0u+w ֘鳾{y܀:R*Ya]"Ӧ%ktynlۣ65,3gU}{GYrb;ge'TKwǘ.,rpܚV]Tr,!dp /ԺU,xՉ>s׽~W5oTh yx?xrrx?)?ilbT׬,z$Ԏ.UH٠\U1pU:]JwSrGZq8àd驐,N67QYBӢD㏙W!Q25ϸo9ms-7-%3CihO.J鯽-;MZM8ku-7k9S$8]q2E(}bۏI[DKOK}3KUB^u %Y,u.-&f#]'܆o$x`Yu,dzwM;#oKxn;\[d7}Rb+*Y䛂ZuBӱl{j0O̓}LhK;[aֶaGL{Cb#S.T[>߃F]NK"u^LUʐ_ykW?!GRj29͖qa'0[npcDvV)qz9R)PۨM^aJx W] r>];eN3vxdmĘ(5W2K1䪖weF{mE/QP6\u54x5[hۮ-Nk”i[lUgL]J}5 S:EhiUrgHl!ŒJ$pe=q^b͵Q' ?6|R\,JA ڵ"TDꈭ:ymg`B5t%M] <N_zv2_Ortٵ/i/ReӮ*7[qүqEG* m"[I:6e^p"I$jԴęh!m)]GZkcjS!{e^z}+Cѥ9;R|/ֱeiUԏCNu2Zhcٗg$ݭwvr P8*7/Lk~I'Km1+MW%Bk|oOm>-#qj*|Dbѱkn|n{v#jĮqNpMIUm(7Liz;{ҜݞڝVƚVϬ+sO!OstGvxӉ']uӎ4g_ 1^-8ۦ k!)Ύ5O;YSB#2Zzχ;<.ֵOtge~.(RC#wFZeGZٸ6FFJ4e2ˇpJT$[wgV)q6muDGJ56q\I!̗ y/I~RtJ9kJ]Iy*'FN0s.[l!fw'y(7$œ WƫgyΙdMEU JQJv̋vmrۖ.jWR_M֨djYgSj0^\y'EoECjm$ IƩK>Z28J2TiJ2N#}.s cArl嫶nB.FIJ.)۔\ZiM>/hLĸ=C1s[?YMqp|94- 鮝𦔽/k^#NT(Y LS$6˩}{;5 )B۷W$qpN)qqoot}ZDVә;7TiK|6f3h$dԄ}fqݡ>Nb򗉉+ͶO]>ߡ_VtYf79ڰիF sq~prս|QM)g%l0ocJȨHz V;Bb/kLAcfPJ,ԭ{ƍgpjNR6VSI*$!yV足jᇑ.](EܣqM\qJ2eZT).<9UB/(B0j)mtKEj#׿fDI-=rZړj|'Nڤ]k*i$5qt"ݙPM6E4ke^Z8ۏhz$Q(R Ay2zfRñnpnkbkI:=j &ΝșW?׵d{+ύM'??XqeeĽ.[o=UxFS=ӷdZwenՄ]_X=ĭVa* pKs0ބۍfJ3 gz̚i|wnxtjc¼5${(1fXQ65ȼb̶Zkn>%FQMJXӡ{TZEVNᖣimT/37cNJUPnP҂ZOE~"-Rc4^b- FEͧtf5[)S!OZIښݲ͑;tvܡ+N)AR=hCNn;wL16-:特7M$=Tҕ-.R[HٷnXk sn[ҞD-0WS9p9:-Ϸ-jѬNu{ҹfv)[Ľvwfg(ٷfe+0mYj8Q1\ݧg]Eǎvڿc!4#j5̋C2"}BRriFp7=ô\TZ:\BLfj#I22װ<;صZl j 6:l"6]۸ K'6RTѯ^ئOԓV\?$x7s#r:Oh{ց=MmuHԷd{pN /܅:UE#Yy+(SgQ(Щ)RHzw>^Ѿݻ>mK&^ '$Jۻ&w%F|xfz%˳ L~3N?Cy9 v w/{ƿ kz3x> sXv}vP"@WyC z`'톽Dw%-tt yVY\wmuPYQA0iG-2JP,6/gˢ]u.-n!Zw.N7Q]Df}Q0({a\@=i_X7gFǘ8^⻲}G MZ1)WEfO12G+=-B@z\`||w6ċj߬m}UwRox֢I &c~XGP6Qndpvܻul'V7^FJt^{b^B(L~sѣ6@߿^xqU!ڙ5|Vpvef-uӥ^3  FSDɯKD%0r}FF穛r7 +o"V8tv̖NQU!5uFd"bCr^bJ=֤fM#ʳԷP0O-9xRBm\=`r-:;~3Tl(nXtXi%2Vٛ#vwqƴ`L@"H‹qW.j,JM5B[)WܺUeZFqc'V˷1W7V̾-MHФwn8N;HPSdݷC7&2j.W\τGŎ'Vb]c.x+Rx1%C2T{myg[qU|+m:M:շ8҉yWd)ՋWS%%:iqlʹmGwݹ WnNŤѩ5(9hTٵDdGUi-)vSs2 2{OnT$Xck n:¶(lASLeȔBjμPpTb2~N2~%^k[ܗ[Jzs0ӓHBKq[}JَA-$dFQgjxxFv4r/x*Rm% `4J(&iv7SkԲmSH1YWmx 8n.k']:Z˭_W >ڃXЩ. jTq%Aā[E}amc]D:rmHRiu:uӚӢ\p(5-q%e)(۬ҖȽIf<߽pr&ݫVfY91q2ĭEQgYbTGQ&,yL+N$[q*RVۉQ=FuTܻ>f>f㋳8N6$܌n)9&»iˤsX,݅܍ȩv+sRTpO}d?Wn/Inpȸ%O]StQO|v5\}7Zwb.AIVK^:wb{[uݯcytO߶S<{8KSRׁH̏N7ۚ[xkwYy_'ZӵF+>쌛ZUĦreE9F[24De{}@:ExWs-\ǻ7K-\JNvEk%:s˙#κ].oͳ;լ7wB6nwu:$L; DkI#Wz.:Xp(˅v$Sq,wn\qIN-e<5Oe+vuYTpcojUI_ާP8 O 7&VL8z$_B-H-[uh]T{|8=qVRN-:Ij:7PUtXϷmy鉿:RIM~33ӸS2#׳GdŲ5+/Bx{(WzȨ5Y㞎#|˖+ ط.|e<o/rߔX>7s}VE.OVti׽ .5nNJO"95{#q}Ay9do]R"M6z\tnNS-D!@3N_jicWsy*5uٮRcWv/.,j}=S)j5C^> Ie =gu9ӛqjtz]۪TMoߧI!Ǧ¶m:,"[L!{qAv-o 3{"KʼnrIkfٶj2ƙ؄S`7` k6jzޞ?e5G&6uʷ2%ԒRKE*G\Npom F/V |C0.q_eenƣ<5Oh'67ɪn[SĽ{ڔjǘzs;~׌(ۂ`ܢ1ƣ` _l9Va6%UQWh~P~\F^ZHR@:ۧCJ{ôGeBh;~ۧnU J\O+n2 RҠ)ng}Kh{5+S×ܛ.1ZjG)iRȤIN 4%{oΜ/eO[Nffd ĹK?nnԼMqX'܌nZvq<ķbFnͪaQ`5 s,M_լ?-@_{w{ӺձJ}GF[%v\5[ŒGkOw/ΜM9rjË%2+rd~+󲕛C9U۳r[aJǭm|˒LAʨSCq[XMۺoubfp:t+ΤĻo ][ zt-*67kvS7D·MMCQXm;)܎n_h%]4ܙnRk!]ڵsDUF"`R, &#R_*[z*ZqFXɻ]7|۵w+'pFDەs=r./ᐚm3Hשy yD"jHCr':sA65نѮ^o1V/ f;nFr3VM)e*- s D'H݅fӧ\*޷[k<7u<-]֍Q8R h|p=WlW3s%Q %3l}@U-K6f-NϿu|ڴmWN׮[׸F*mW\%r! C78:޳vBG7ŵ.JթԚ2x)ST!řn~9 W:Wpܢ件{xf8ٳwKE ҰWxVB\qBZ 2wMb[lGSnyԚ~z9ZmያvoN2Afnݽjf>)j3 !;gOYʹK" Wftڎ+׭b*2ϻK>ۢӱeyԪXISUm[z+ugX%0lϏnvg!;t{BqPj>PyvR7Cj]O%+ݲ :qiMj6W}3vC/R=4Som]ŗ=ю, TF6U_-\6MyskwMr&Q\wjKܩyMϣUj0*}RZܷSdY3>Zjqj6TgzpA/M`/Cmл,޻feE[/+uk^Vs1W$G(JsW2ٰu*߻q*Y޵.Wi:ur5T),=0uRmho.twܖiYwrWHntvEj8qhf`Ͻpf(R&>Ki%I7$QӖm-2 ~yߗQ-앑/ x[k8nw.c㩵k}]FkbJl:{.(˩n0Hqvαp7 귎.Gupx[N`Yq'+ruU7[ү+>!xrȫoSo]OC# d^Q]\>!ƛGw^Mx"-+%vdX-:M2UR%d>%l ioSu6lsj7D P>XxHz Ukà(n^Q V>5cVtWj SEiJdznyej[lE' 3kuٌNn4JW)gB {4 j6&]' m-(ZMEz8cz>WZ6#7+[,MR-Z!4ܓtCyE|umj1ƽvƷV\;%>Q :#Le(iVz5 4ũۤUWxX ^(ҔsլB2w-V ^R+; ˂M\z+Uwr+RWY⺧~ Q*JcYSNSλUd8in=v K낫k\IRרSUaCFmϿ5̗P|u ZTԕ}>oYѲ1sfP+sQkX8Gb~6r,s>^\,mGL+7[n-E\.Fqḕcl*Jmjb5 ,m]c}NXfeVlǸJ5eˡ$4%g~N p4Y*WwW٧<8v#;qԩTut,m"#Y D\5V`\\Lȋ];LȇiS6ϝZ l>LruR\v=ǘϔDg=ԈdFZ+M{=|,[;0>RiSi4,S5}yxw&(E7&fݙ4UՕ! ~'Id)]ǽu2K-fޭ \08Vڅ쓬=Vy^^ IhyKR-B#Ըr=]mܻӾ'*Umkoy rTqT_i,/8Q^<ݤ|4ԻO(܄"'5N~#m.(Ҿ2i6Uev&I*<}҄$eNtÛzyWJubW^iBW.܅Wڮg]irO6Ve90sgv.+sV޿aޔ[p?3q*FutUo*eL\KM'EG*ZcAFfG5J 5jj=MJ3OK:k˝'NMB7m3uFҕ\-Ywg%PRqMIyZGY9|μvn߻5cWݷa^+X֥vnݘ\v7m>Fgzv"-;Ew֝}1|RjN𿊀7g#֟*GQQ|#/bo]p$>_Un9гUbn9׃ErQBU-^vDmVh'<R[fdHT]*~}3j;nvjc7s-rӳ Y8[n[1pJx kX[Jk9Mn!_Nю6x:iZ˦U |߉^Ԛ݃hYxk &U^bwKk.[jE+P(˞=9j@snCv7%c_7=xǁ<l {t'酚+1F‹l׭:ݻILruǶkL-L(K0L1&>wXB(pm;1fpnlp֓%Skidkt(U +xulo'/ڕeN r=^pZZ:Pnj8Hf"48ijY[ N[yZٻ+=  ø:3 ?^ܷ^Sr#YK[UF?CuhC b]GM')mڏsNrܗI]ljq6VB. W,UK"YX5{c >Iqā> T:n!,5l2VzCl|+I[*SrjnS6٨y+x,@>П.g+!rn9>N|W>OZT_ut Y""v7|sfި;Pclm EùN,{'fNT%U&LfH8~1v>Il}统u6P˗c(WV~H^bMU.o*oOF0N:_:6Smr_.b+|ݶYY غF,mwjv>f*>QM뭱Sd:`N{l/⎱;n-z~"Gze퇎J5S KG9!Gn;N1 ݎ h6m|S?ɂ5'WOÞ 7|7^ao @mxGmi^jϽ>01Mf0լD3-2T. VXR"ɥV Kl J O7|u?bvа;6.eߓ|[1bmRr,eRz`z 6܎-ͨku͹Fː dPhYgZUj}nvX;z=gVեTv_J }\1n7w2J?ޘγc\E 1Aޑzq;\r]]\Y&[nsNei\uURje*Qk2CSl*xJz-xٶlm+|UjUؓ`Ladqiĩ!Gd\W~fz;Tn*PdRM&T4`չSWq5k훶(N"Ӎ% V]֦wb.nUO!u*J&Oӕ2e|Z=eV쫚΅g#+/RW:طnbi*Wyo)p{:ETKؚR(RY+r웓r(IF) VmȵNB:h Q1ғ|u8E]{,'$-TR[j49l*3"I鯴zhd>Q+\BkNF=.$ZR4Nwհ(IpNi.(Gi33#33e$FXK*NdWrud[r{xnk$v2ıh+J1TQ[#JQl[tRO]LHKٮ NӍnF񨔤֞Em'MILB"ԋ%dBŋ+p̿_17jzT~4pc Vo\ƹb9Rq-'1j;8ܗ)hE%DZKS<璸Bu*%*Yw5ڻ9ۣ^z4U; Ñk\U(o~G?VUĎ:?P?_F_Kߤ~ᓾI |pr.Ok\SklRhҪz{­P .}SktZ7UQ4ڌIM8̈eaӊJZ%FFZu,KZvln廐SNFIVtuNi?CM5]+Ph,{jN JSR$IS^tSUVrORYu.9WyP6 [Kiu m!X|]Y79ӄ)\ģ)pbڳr%*&ꑶ_-H*dzk)1 V3')UAϹٶWRxe'պn۫h7AR9 EAJeGLms!%D| A 5]/Q3eb̄vnVn%za\m kZnv([emqrIҕij|""><hjJשvvǕ|Pޟs}V~2&Z?+2N&Z4w@)4iSڪ_>/JN9Hiۏuf8'It[ȲR.hZ$ȋ_Y ~U<UUO*6b)Ovzڜj\R̋.$FsQuҊj^נ䈈y<zZIuP[}Qm=C?zN(Exqu/kn S-FzKZzOסӽjJ\)F3b!r5ٝ|;6 o=-3*λ]αb\abqRi-w޵⦪~b8Kpo)Z=>)ғ"5/GTZLE-輵f7ݘ۹~+&+w/7GFI:l33fg.N~۲\2|*cnermnnM+Fq"ѪIz%j =YW8@~gc/~?N'?)«qȸs➟n=k" X“m֮VreMh2[uݖ] *FܖN)MȐ`f0 g,C9̑o;ddudJ=In13:ݒvvdMUEJLp^,6t-@͐9'{7m{-3,>hnF;ѰM)->>+Ěz!R* :`e--m7nB\u{b U>[8֪]6^ߤLʦ\DFNo$$dͶlgno8OrsQ\l̯hRo8tuNo+ CTxu!2[>ctFpeޓƻֶR"3QrQuOѳgwQr;S~)6HhZw/GgVTmUf_yt7%$];zLWF̰xy2Ʉu!MCmš_0[W6jf#a-KLi+3Q7c^qg%s<1aYIQeZf+}>;S6L0]Yu_h9߻<ƅpmiM$AVvŚ,*#t2.8Y)-Zhshü97/#Oro"u^/uFgWɺ,p:6a,^x%$Yve^3PƗMnTP&yS}OJ '덫MH^:rXԴJۋ/rI;S*,+yz1hv)Qw^ڍJ2oL׊q(\fDj:^T%vOadɂnS}ZO)N*λdaȜkG_PIEO}нa(^iQX᯦-7^)%g'SJx(.S9zVɴZ{E ))ۅi/s7 VIV-|sj0*UBTHIqRf>FP$KqN0 R̻8j\GcC}IUz\i 6F)Q{Gҧ3qSzKj-Az VЛS-zy:8*mNk|D鿓ND2u+0Yŝ7kqm·?8Ib]u>˗^_>(]vӋzv+ݩ){vZrJ2RQ몋C$z [,pp,8mڊbR]Il .f~d/ݓs㓓mͶ{mgjQwn=Oic9ܚm4Q/6ݨ[TƧ?nԶoytf{@AzT{e{[O'ZRZt~AGD?s3􌿂ՉIw'|~U\ w~di:Kޱ)U/sU%njѩ&GSP^ǝd)..!^U` 1wX[aԇSxoFV6_扐)T 2Mfd=ۖͭiZ7KK Bi9%7@<3<ճԻU,},a}FRqɛr i@ONJvK KLN M, ʖv0n-]DwlI-X6ܶ$Jʴh5O+mOI+Ra瞠\ MG7BفjYo1#͖0V`Ѱ2M?c8>-Crt*JkIGS:e#hPKx[鱼>{5m;wcն&>j-M֥^َ) 6yȜl_w{-ō̱r> U=]iw3)r*]:K]6BdCTZ|>gf}LW}[$'Y5 &c -j.z6R 67MԷFMnÌwI7w5E}o޽+K ֵy4܌ȥW"COyR[q5Ӱ͙f[v"_#q{MV6܍3"u9BK(41ӯqˇc${ߝCi6I(OmθzҜ5k^:>Jzw.>qV8{vU[ڶEm|DžBz].KHjI]x;Mɗ{m,qZXr忇2u^RO2Z}ZێS[2Jen!*NDcrBUً4<ǼMҲs1Zw57c3&ĖڻzmP*FuJG1-dN:|OU}ҵgi2t~F^^Z.VxjvŧnNNh<:]^~NN+ge^g.SԔGFe߯'[vn'(ScJ]kܗ7eJOlRrfziݮq̋S"\*U<*W]k$FջV}? 7g#֟*GQQ|#/bo]p$>_Un9;l S VvQU%OLU{οmU6bZ1MTx%!֙Q7, J=!3 ;Q,ڌ;6ͱ݅q^&ߔ·n #WbwӖX.HtG)N&d̵zpI,n cu ޖUj+VXUp[w]N o.J6Z8Ts&utxln;~HPHS/xw`G\ʡ¿rj Z^vt"[L:SD\h0sUwR,}[x^X,R2Vn< ]2YDr[SRKs8tXb̷G?Ps Tv 3be,zVz D[/I.KOEQrm'$7|[J>r S`5յwT#\w1FTz\Ԛ &"ׅhSHrD\'r]~/>p;:Piuu:"9ő=tTaS7V2rӷk7mb[^WmPp*[y.Þ6f]cizJCgRR@UVl큝.WJP1N{/\whZ ػϧӱE7|E֫Sί.x-Y&pi%v''-x6r'Ws*6=DwwUu]=C?MK [yrtܒG$!WGqJ*%SAz ED[^)/tė/g=#Omd.|^n/sl׉g DZqemqowݮRzUܜ=ڽ-o/Iۖ;qVʘgPp|mm;6zGl9.8pwWgsJ2qPbe}}UpNjٯ}7TMQKrؽtEx%v w߾8%|j;~|}pK]ơ/ w߾8%|j;~|}pK]ơ/ w&~e_H 8PL7:%ʭ5Kw&U2vwR_+rm'}C7#rWoO&HoG?M$UR7{FU]u ;# !Wk`|W>׹潇9Vn)6)*ҹ{%qV4q>W1vi#T"Qk&GwxcJBJ- Ϸ^ˁxkU}ԣ/3.;]J=<*)cS)ROK9H=,r zX @)cS)Da^ԽQ gxJI=w֣gf*TRj

Correspondence to Sang-Shin Park, PhD. Professor, School of Mechanical Engineering, Yeungnam University 214-1, Dae-dong, Gyeongsan, Korea 712-749. TEL, +82-53-810-3538; FAX, +82-53-810-4627; pss@ynu.ac.kr
• Received: June 28, 2012   • Revised: October 3, 2012   • Accepted: October 4, 2012

©Copyights 2012. The Korean Academy of Conservative Dentistry.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 1,939 Views
  • 10 Download
  • 76 Crossref
prev next
  • Objectives
    The purpose of this study was to investigate the screw-in effect and torque generation depending on the size of glide path during root canal preparation.
  • Materials and Methods
    Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer) were used. They were divided into 4 groups. For groups 1, 2, 3, and 4, the glide path was established with ISO #13 Path File (Dentsply Maillefer), #15 NiTi K-file NITIFLEX (Dentsply Maillefer), modified #16 Path File (equivalent to #18), and #20 NiTi K-file NITIFLEX, respectively. The screw-in force and resultant torque were measured using a custom-made experimental apparatus while canals were instrumented with ProTaper S1 (Dentsply Maillefer) at a constant speed of 300 rpm with an automated pecking motion. A statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test.
  • Results
    Group 4 showed lowest screw-in effect (2.796 ± 0.134) among the groups (p < 0.05). Torque was inversely proportional to the glide path of each group. In #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical terminus. However, in the other groups, the decrease of the screw-in effect and torque did not occur in the last 1 mm from the apical terminus.
  • Conclusions
    The establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for safely shaping the canal. It is recommended to establish #20 glide path with NiTi file when using ProTaper NiTi rotary instruments system safely.
Nickel-titanium (NiTi) instruments are believed to shape root canals more effectively than stainless steel files. It has been shown that NiTi instruments are two or three times more flexible than conventional stainless steel files and have more torsional fracture resistance.1 These NiTi instruments have also been found to be better than stainless steel instruments in maintaining the original anatomy and the shape and position of the apical foramen.2,3
However, despite the advantages of the new instruments, NiTi rotary instruments have several unexpected disadvantages. One of these is the tendency to screw into the canal.4 This phenomenon happens frequently when the NiTi instruments rotate continuously. It may cause over-instrumentation beyond the apical foramen. Undoubtedly, over-instrumentation reduces the success rate of endodontic treatment.5-8 In addition, instantaneous increase of torsional stress may happen when screw-in occurs. It may lead to a so-called 'taper lock' effect and separation of instrument.9
The force generated by the pecking motion could be classified into two components.10 One is the force that comes from the axial stress component. During pecking movement, the blade of the instrument can become lodged into the root canal. In this case, the simulated resin block was lifted up in the opposite direction to that of the instrument's progress because the resin block was given to some freedom to move in the corono-apical direction. Also, when the instruments are withdrawn at the end of the pecking movement, some forces are generated that can restrict with withdrawal of the instrument from the root canal. The sum of these two forces could be referred as the screw-in effect. The other is a force that comes from the rotational stress which is related to the torque. As the simulated resin block was firmly fixed to limit rotational movement, the rotational stress in the interface between an instrument and a root canal was applied to instrument. The transferred rotational stress can be measured in a form of torque by a torque sensor.
Coronal enlargement and pre-flaring to create a glide path is recommended in order to use NiTi rotary instrument safely. It can prevent the torsional fracture of the instruments and the shaping aberrations.11-13 Previous studies demonstrated that the tendency of screw-in was affected by the flute, pitch, and cross-sectional geometry of instruments.4,10,14 However, these studies have focused on the mechanical parameters of NiTi rotary instruments and the curvature of canal.4,10,14 There have been few studies on the relations between the screw-in effect and the glide path. Therefore, the aim of this study was to evaluate the screw-in effect and torque generation as a result of variance in the size of glide path during root canal preparation.
Forty Endo-Training Blocks (REF A 0177, Dentsply Maillefer, Ballaigues, Switzerland) were used, which had a size of ISO #15, a 0.02 taper, a 35 degree curvature and a mean canal length of 18 mm. Standard artificial canals in the training blocks were used to minimize the variation in observations. They were divided into 4 groups depending on the size of the provided glide path. ProTaper (Dentsply Maillefer) S1 instruments were used for canal preparation, because ProTaper showed the highest tendency of occurring screw-in effect in a previous study.4 For group 1, the simulated resin canals were irrigated with distilled water. All files entering the canals were lubricated with Rc-prep (Premier, Plymouth Meeting, PA, USA). The patency was established with #8 K-file (Mani, Utsunomiya, Tochigi, Japan). Then the glide path was established with #13 Path File (Dentsply Maillefer) at the full working length. For group 2, the glide path was established with #13 Path File and #15 NiTi K-file NITIFLEX (Dentsply Maillefer) at the full working length. For group 3, the glide path was established with #13 and #16 Path File, and modified #16 Path File. The modified #16 Path File was made by cutting the tip of #16 Path File at D1 level and was equivalent to ISO #18 as a result. For group 4, the glide path was established with #13, #16, #19 Path File and ISO #20 NiTi K-file NITIFLEX. For group 2, 3, and 4, the other conditions were identical to the conditions for group 1.
Ten canals were prepared for each group. By using the automated preparation protocol, the influence of the operator's expertise and habitual motion during preparation was excluded. To materialize a clinical situation, a custom-made device was produced (Figure 1). All of ProTaper S1 were mounted on this device and synchronized with a torque sensor (Figure 1b). This device can provide constant rotational speed (300 rpm) and pecking movement (speed at 0.5 mm/sec). Automated pecking movement was made by computer programs. The pecking distance was controlled by a control panel (Figure 1c). The pecking movement consisted of 2 mm forward and 1 mm backward at each step. After three steps of pecking movements, the simulated root canals were irrigated with distilled water and the NiTi instruments were lubricated with Rc-prep again. The simulated root canals were mounted on a dynamometer by a mounting jig (Figure 1a). A dynamometer (K1368-10N, Lorenz Messtechnik GmbH, Alfdorf, Germany) and a torque sensor (DR-2477-2.0 Nm, Lorenz Messtechnik GmbH) in the device measured the transmitted force in milli-ampere (mA). The signals were amplified with LCV-USB (Lorenz Messtechnik GmbH) and then transferred to computer files by two pieces of provided software (LCV-USE-VS and VS2, Lorenz Messtechnik GmbH). The acquired data were synchronized and used to produce the plot (Figure 2) (Origin v6.0 Professional, Microcal Software Inc., Northampton, MA, USA). The data were first analyzed using Kolmogrov-Smirnov test to evaluate the assumption of normality. To normalize the data, a statistical analysis was performed using one-way analysis of variance and the Duncan post hoc comparison test at a significance level of 95% by using a piece of statistical software (SPSS v19.0, IBM Corp, Somers, NY, USA).
The used instruments for each group were observed under optical microscope (SZ-PT, Olympus, Tokyo, Japan) using 40× zoom to evaluate the deformation of the instrument and the modification of the blade.
The typical strip-chart recording of the screw-in effect and the torque are presented in Figure 2. At the moment the screw-in occurred, the torque values suddenly increased. After that, the torque values returned to the baseline. In most of all groups, the screw-in effect and torque were increased as the file approached to apical foramen. Exceptionally in #20 glide path group, the screw-in effect and torque decreased within 1 mm from the apical foramen (Figure 2d). The maximum value of screw-in effect and torque for each group are shown in Table 1 and Figure 2. Group 4 showed the lowest screw-in effect (2.796 ± 0.134) among the groups (p < 0.05). There was no significant difference among the groups 1, 2, and 3. Group 3 and 4 showed lower torque than group 1 and 2. There was no significant difference between group 3 (#18 glide path) and group 4 (#20 glide path).
In optical microscope examination, topographical changes of the used instruments were not observed.
It was estimated that the tendency of screw-in is harmful for root canal preparation. However, there have been few studies about the screw-in effect. Some factors may influence on the tendency of screw-in. When continuously rotating mode is used, NiTi instrument can be screwed into the root canal. Several parameters have been demonstrated to limit breakage and the screw in.15 Gulabivala et al. stated that it is notably the case when light pressure.16 The speed of axial movement was 0.5 mm/sec in the present study. If constant pressure is applied on a root canal, the instrument will screw into the root canal even a light pressure was applied. A slight pecking movement prevents the tendency of screw-in and reduces stresses. Pecking movements give the instruments a time interval before the file once again passes through the highest stress area.17 In this study, a pecking distance which consists of 2 mm forward and 1 mm backward was used. Also, previous researchers stated that the stress was reduced when rotational speed and torque were controlled.18,19 Rotational speed was controlled at 300 rpm in the present study.
Previous studies have focused the impact of instrument itself.4,10,14 Ha et al. demonstrated that cross-sectional geometry of NiTi rotary instruments may have an influence on screw-in effect.4 Some instruments showed much greater screw-in effect than others. Existence of flat radial lands may be related to reducing the screw-in effect. The taper of NiTi instrument may have an influence on screw-in effect.14 The size of the instrument's taper is directly proportional to the amount of screw-in force that is generated. There was no report on the screw-in effect by the modification of root canal morphology. Hence, the design of the present study attempted to investigate the possibilities to modify the root canal. In general, ISO size files have been used clinically. The #13 and #18 size groups were supplemented to evaluate the tendency of torque generation and screw-in force as stepwise increase of the root canal size. The commercially available simulated resin canal blocks used in this study had the tolerance of the manufacturing process. We chose blocks in which the ISO #13 Path File bound at short of the working length.
The force generated by the pecking motion could be classified into an axial component of force and torque. The axial components were the screw-in effect and the apically compressive force. The apically compressive force was negligible in this study. According to the results in the present study, lower values of torque were generated by establishing somewhat larger glide path. This result was in agreement with previous results which concluded the incidence of file breakage was reduced by the use of hand files before introducing rotary files.12,13 Our finding was consistent with that of Schrader and Peters, that the torque was dependent on the canal size.20 The simulated canal instrumented with #20 NiTi K-file showed a lesser screw-in effect than any other groups. It was postulated that the larger the size of the created glide path, the lesser the screw-in effect. Also, as NiTi rotary files moved forward, a larger screw-in effect and torque were generated. This might be due to the decreasing surface contact in larger root canal. At the moments that screw-in occurred, the torque applied to instruments was suddenly increased. This might cause unexpectedly file separation. In a situation such as thin dentin structure around apical foramen, the initiation of root crack might occur. In the #20 glide path group, the screw-in effect and torque decreased at the last 1 mm from the apical foramen. It might be related to the difference between glide path (ISO #20) and the tip diameter of ProTaper S1 (ISO #17). In group 3, although the size of glide path (#18) was larger than the tip size of ProTaper S1, the decrease of the screw-in effect and torque did not occur within 1 mm from the apical foramen.
The present study has limitations. First, this study was not investigated for the actual teeth. Second, the groups of #8 and #10 size glide path were not involved because of the absence of suitable simulated resin canal. Further studies are needed to investigate correlations between screw-in effect and strain on root surface.
Within the limits of our study, it is possible to conclude that the establishment of a larger glide path before NiTi rotary instrumentation appears to be appropriate for reducing the screw-in effect. Especially important to note, by establishing #20 glide path in the canal, the screw-in effect and torque would be reduced near the apical foramen. It would be recommended to establish the #20 glide path with NiTi file when using ProTaper rotary instruments system safely.

This research was supported by Kyungpook National University Research Fund, 2011.

No potential conflict of interest relevant to this article was reported.

  • 1. Walia HM, Brantley WA, Gerstein H. An initial investigation of the bending and torsional properties of Nitinol root canal files. J Endod 1988;14:346-351.ArticlePubMed
  • 2. Glossen CR, Haller RH, Dove SB, del Rio CE. A comparison of root canal preparations using Ni-Ti hand, Ni-Ti engine-driven, and K-Flex endodontic instruments. J Endod 1995;21:146-151.ArticlePubMed
  • 3. Yun HH, Kim SK. A comparison of the shaping abilities of 4 nickel-titanium rotary instruments in simulated root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:228-233.ArticlePubMed
  • 4. Ha JH, Jin MU, Kim YK, Kim SK. Comparison of screw-in effect for several nickel-titanium rotary instruments in simulated resin root canal. J Korean Acad Conserv Dent 2010;35:267-272.Article
  • 5. Malueg LA, Wilcox LR, Johnson W. Examination of external apical root resorption with scanning electron microscopy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1996;82:89-93.ArticlePubMed
  • 6. Sjogren U, Hagglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treatment. J Endod 1990;16:498-504.ArticlePubMed
  • 7. Smith CS, Setchell DJ, Harty FJ. Factors influencing the success of conventional root canal therapy-a five-year retrospective study. Int Endod J 1993;26:321-333.ArticlePubMed
  • 8. Swartz DB, Skidmore AE, Griffin JA Jr. Twenty years of endodontic success and failure. J Endod 1983;9:198-202.ArticlePubMed
  • 9. Sattapan B, Nervo GJ, Palamara JE, Messer HH. Defects in rotary nickel-titanium files after clinical use. J Endod 2000;26:161-165.ArticlePubMed
  • 10. Diemer F, Calas P. Effect of pitch length on the behavior of rotary triple helix root canal instruments. J Endod 2004;30:716-718.ArticlePubMed
  • 11. Berutti E, Cantatore G, Castellucci A, Chiandussi G, Pera F, Migliaretti G, Pasqualini D. Use of nickel-titanium rotary PathFile to create the glide path: comparison with manual preflaring in simulated root canals. J Endod 2009;35:408-412.ArticlePubMed
  • 12. Berutti E, Negro AR, Lendini M, Pasqualini D. Influence of manual preflaring and torque on the failure rate of ProTaper rotary instruments. J Endod 2004;30:228-230.ArticlePubMed
  • 13. Patiño PV, Biedma BM, Liébana CR, Cantatore G, Bahillo JG. The influence of a manual glide path on the separation rate of NiTi rotary instruments. J Endod 2005;31:114-116.ArticlePubMed
  • 14. Sung HJ, Ha JH, Kim SK. Influence of taper on the screw-in effect of nickel-titanium rotary files in simulated resin root canal. J Korean Acad Conserv Dent 2010;35:380-386.Article
  • 15. Di Fiore PM. A dozen ways to prevent nickel-titanium rotary instrument fracture. J Am Dent Assoc 2007;138:196-201.ArticlePubMed
  • 16. Gulabivala K, Abdo S, Sherriff M, Regan JD. The influence of interfacial forces and duration of filing on root canal shaping. Endod Dent Traumatol 2000;16:166-174.ArticlePubMed
  • 17. Li UM, Lee BS, Shih CT, Lan WH, Lin CP. Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests. J Endod 2002;28:448-451.ArticlePubMed
  • 18. Gabel WP, Hoen M, Steiman HR, Pink FE, Dietz R. Effect of rotational speed on nickel-titanium file distortion. J Endod 1999;25:752-754.ArticlePubMed
  • 19. Gambarini G. Cyclic fatigue of nickel-titanium rotary instruments after clinical use with low- and high-torque endodontic motors. J Endod 2001;27:772-774.ArticlePubMed
  • 20. Schrader C, Peters OA. Analysis of torque and force with differently tapered rotary endodontic instruments in vitro. J Endod 2005;31:120-123.ArticlePubMed
Figure 1
Custom-made device. (a) A simulated root canal was mounted on a tension/compression sensor by using a mounting jig. The generated signals by simulated canals were recorded; (b) ProTaper S1 instrument was synchronized with a torque sensor. The generated torque signals in mA were amplified and transferred to a computer; (c) The pecking distance was controlled by a control panel.
rde-37-215-g001.jpg
Figure 2
The typical strip-chart recording the screw-in effect (solid line) and torque (dotted line) during preparation. (a) Group 1: #13 glide path; (b) Group 2: #15 glide path; (c) Group 3: #18 glide path; (d) Group 4: #20 glide path. At the moment the screw-in occurred, the torque value suddenly increased. After that, the torque value returned to the baseline. In most groups, the screw-in effect and torque increased as the file approached apical foramen. Exceptionally in group 4, the screw-in effect and torque decreased within 1 mm from the apical foramen (Asterisk).
rde-37-215-g002.jpg
Table 1
Maximum screw-in effect and torque

Different superscript letters indicate significant difference between groups in horizontal row (p < 0.05).

The numbers in the parentheses are standard deviations.

rde-37-215-i001.jpg

Tables & Figures

REFERENCES

    Citations

    Citations to this article as recorded by  
    • Comparison of Debris Extrusion and Preparation Time by Traverse, R‐Motion Glider C, and Other Glide Path Systems in Severely Curved Canals
      Taher Al Omari, Layla Hassouneh, Khawlah Albashaireh, Alaa Dkmak, Rami Albanna, Ali Al-Mohammed, Ahmed Jamleh, Lucas da Fonseca Roberti Garcia
      International Journal of Dentistry.2025;[Epub]     CrossRef
    • Radial Lands and Alternating Cutting Edges Contribute to Reduced Screw-in and Torque in Curved Root Canals - An In Vitro Study
      Greta Heimberg, Sebastian Bürklein, Edgar Schäfer, Thomas Gerhard Wolf, David Donnermeyer
      Journal of Endodontics.2025;[Epub]     CrossRef
    • Three-Dimensional Printed Teeth in Endodontics: A New Protocol for Microcomputed Tomography Studies
      Tiago Reis, Cláudia Barbosa, Margarida Franco, Ruben Silva, Nuno Alves, Pablo Castelo-Baz, Jose Martín-Cruces, Benjamín Martín-Biedma
      Materials.2024; 17(8): 1899.     CrossRef
    • Evaluation of Pain Following the Use of Different Single-file Glide Path Systems: A Randomized Clinical Trial
      Zeliha Danaci, Kübra Yeşildal Yeter
      Journal of Endodontics.2024; 50(2): 120.     CrossRef
    • Cone-beam computed tomographic evaluation and fracture resistance of endodontically retreated teeth using hyflex remover, Mtwo, and ProTaper retreatment file systems: An in vitro study
      Isha Singh, Dakshita Joy Sinha, Pallavi Sharma, Kunal Bedi, Priyanka Rani, Swapnil Vats
      Saudi Endodontic Journal.2024; 14(1): 56.     CrossRef
    • Screw-in force, torque generation, and performance of glide-path files with three rotation kinetics
      Jee-Yeon Woo, Ji-Hyun Jang, Seok Woo Chang, Soram Oh
      Odontology.2024; 112(3): 761.     CrossRef
    • Morphological and structural variations of Nickel-Titanium endodontic instruments subjected to instrumentation loads: in vitro study
      Yenny Marcela Orozco-Ocampo, César Augusto Álvarez-Vargas, Francy Nelly Jiménez-García, Daniel Escobar-Rincón, Paola Ximena Jaramillo-Gil
      Revista UIS Ingenierías.2024;[Epub]     CrossRef
    • Nickel ion release and surface analyses on instrument fragments fractured beyond the apex: a laboratory investigation
      Sıdıka Mine Toker, Ekim Onur Orhan, Arzu Beklen
      BMC Oral Health.2023;[Epub]     CrossRef
    • Evaluation of the Efficiency to Remove the Infected Dentin via Enterococcus faecalis Bacterial Count and to Adequately Shape the Canal Using Hand Kedo-SH Files, Rotary Kedo-SG (Blue) and Pro AF Baby Gold Files in Primary Molars: An In Vitro Study
      Shruthi B Patil, Kaavya Shanker
      International Journal of Clinical Pediatric Dentistry.2023; 16(S2): S142.     CrossRef
    • Buckling resistance, torque, and force generation during retreatment with D-RaCe, HyFlex Remover, and Mtwo retreatment files
      Yoojin Kim, Seok Woo Chang, Soram Oh
      Restorative Dentistry & Endodontics.2023;[Epub]     CrossRef
    • Cyclic and torsional fatigue resistance of a new rotary file on a rotary and reciprocating motion
      Gabriel Barcelos Só, Giovana Siocheta, Pedro Calefi, Murilo Alcalde, Rodrigo Ricci Vivan, Marco Antônio H. Duarte, Marcus Vinicius Reis Só, Ricardo Abreu da Rosa
      Microscopy Research and Technique.2023; 86(12): 1635.     CrossRef
    • Influence of different kinematics on stationary and dynamic torsional behavior of JIZAI nickel-titanium rotary instruments: An in vitro study
      Myint Thu, Arata Ebihara, Moe Sandar Kyaw, Satoshi Omori, Keiichiro Maki, Shunsuke Kimura, Hayate Unno, Takashi Okiji
      Journal of Dental Sciences.2023; 18(3): 1170.     CrossRef
    • Dynamic torque and screw-in force of four different glide path instruments assessed in simulated single- and double-curved canals: An in vitro study
      Myint Thu, Arata Ebihara, Keiichiro Maki, Shunsuke Kimura, Moe-Sandar Kyaw, Yuka Kasuga, Miki Nishijo, Takashi Okiji
      Journal of Dental Sciences.2023; 18(4): 1598.     CrossRef
    • Effect of Periodic Changes in Rotation Speed on Torsional Stress and Screw-in Force by Alternative Rotation Technique
      Jung-Hong Ha, Hyo-Jin Jo, Sang Won Kwak, Asgeir Sigurdsson, Hyeon-Cheol Kim
      Journal of Endodontics.2023; 49(1): 77.     CrossRef
    • Effect of Rotational Modes on Torque/Force Generation and Canal Centering Ability during Rotary Root Canal Instrumentation with Differently Heat-Treated Nickel–Titanium Instruments
      Satoshi Omori, Arata Ebihara, Keiko Hirano, Yuka Kasuga, Hayate Unno, Taro Nakatsukasa, Shunsuke Kimura, Keiichiro Maki, Takao Hanawa, Takashi Okiji
      Materials.2022; 15(19): 6850.     CrossRef
    • Shaping ability of rotary and reciprocating single-file systems in combination with and without different glide path techniques in simulated curved canals
      Lu Shi, Yunfei Yang, Jie Wan, Wen Xie, Ruiming Yang, Ying Yao
      Journal of Dental Sciences.2022; 17(4): 1520.     CrossRef
    • Evolution and development: engine-driven endodontic rotary nickel-titanium instruments
      Yuhong Liang, Lin Yue
      International Journal of Oral Science.2022;[Epub]     CrossRef
    • Comparison of the effects from coronal pre‐flaring and glide‐path preparation on torque generation during root canal shaping procedure
      Sang Won Kwak, Jung‐Hong Ha, Ya Shen, Markus Haapasalo, Hyeon‐Cheol Kim
      Australian Endodontic Journal.2022; 48(1): 131.     CrossRef
    • Shaping ability of ProTaper Gold and WaveOne Gold nickel-titanium rotary instruments in simulated S-shaped root canals
      Lu Shi, Junling Zhou, Jie Wan, Yunfei Yang
      Journal of Dental Sciences.2022; 17(1): 430.     CrossRef
    • Endodontic Rotary Files, What Should an Endodontist Know?
      Ana-Belén Dablanca-Blanco, Pablo Castelo-Baz, Ramón Miguéns-Vila, Pablo Álvarez-Novoa, Benjamín Martín-Biedma
      Medicina.2022; 58(6): 719.     CrossRef
    • Present status and future directions: Canal shaping
      Ana Arias, Ove A. Peters
      International Endodontic Journal.2022; 55(S3): 637.     CrossRef
    • Comparison of Torque, Screw-in Force, and Shaping Ability of Glide Path Instruments in Continuous Rotation and Optimum Glide Path Motion
      Pyae Hein Htun, Arata Ebihara, Keiichiro Maki, Shunsuke Kimura, Miki Nishijo, Moe Sandar Kyaw, Takashi Okiji
      Journal of Endodontics.2021; 47(1): 94.     CrossRef
    • Analysis of Torque and Force Induced by Rotary Nickel-Titanium Instruments during Root Canal Preparation: A Systematic Review
      Myint Thu, Arata Ebihara, Sherif Adel, Takashi Okiji
      Applied Sciences.2021; 11(7): 3079.     CrossRef
    • Comparison of canal transportation and centering ability of manual K-files and reciprocating files in glide path preparation: a micro-computed tomography study of constricted canals
      Jing-Yi Liu, Zhi-Xiong Zhou, Wei-Ju Tseng, Bekir Karabucak
      BMC Oral Health.2021;[Epub]     CrossRef
    • Influence of rotational speed on torque/force generation and shaping ability during root canal instrumentation of extracted teeth with continuous rotation and optimum torque reverse motion
      M. S. Kyaw, A. Ebihara, Y. Kasuga, K. Maki, S. Kimura, P. H. Htun, T. Nakatsukasa, T. Okiji
      International Endodontic Journal.2021; 54(9): 1614.     CrossRef
    • Shot peening increases resistance to cyclic fatigue fracture of endodontic files
      Javier Nino-Barrera, Jose Sanchez-Aleman, Manuel Acosta-Humanez, Luis Gamboa-Martinez, Carlos Cortes-Rodriguez
      Scientific Reports.2021;[Epub]     CrossRef
    • Optimum glide path motion is safer than continuous rotation of files in glide path preparation
      Giulio Gavini, Eduardo Akisue, Dirce Akemi Sacaguti Kawakami, Celso Luiz Caldeira, George Táccio de Miranda Candeiro, Rodrigo Ricci Vivan, Pedro Henrique Souza Calefi, Murilo Priori Alcalde, Marco Antonio Húngaro Duarte
      Australian Endodontic Journal.2021; 47(3): 544.     CrossRef
    • Root canals shaped by nickel-titanium instrumentation with automated computerized numerical control systems
      Liming Wang, Wenxiang Li, Yeon-Jee Yoo, Shin Hye Chung, Soram Oh, Hiran Perinpanayagam, Kee-Yeon Kum, Yu Gu
      BMC Oral Health.2021;[Epub]     CrossRef
    • An Update on Nickel-Titanium Rotary Instruments in Endodontics: Mechanical Characteristics, Testing and Future Perspective—An Overview
      Alessio Zanza, Maurilio D’Angelo, Rodolfo Reda, Gianluca Gambarini, Luca Testarelli, Dario Di Nardo
      Bioengineering.2021; 8(12): 218.     CrossRef
    • Comparative Evaluation of Cleaning Efficiency and Apical Extrusion of Debris Using Two Pediatric Rotary Endodontic Files: An In Vitro Study
      Nilima Thosar, Sudhindra Baliga, Faraz Ahmed, Nilesh Rathi, Shreyans A Jain, Jayati Mehta
      International Journal of Clinical Pediatric Dentistry.2021; 14(2): 196.     CrossRef
    • Body temperature fatigue behaviour of reciprocating and rotary glide path instruments in sodium hypochlorite solutions alone or combined with etidronate
      Dario Perez‐Villalba, José C. Macorra, Juan J. Perez‐Higueras, Ove A. Peters, Ana Arias
      Australian Endodontic Journal.2021; 47(3): 450.     CrossRef
    • Effect of Optimum Torque Reverse Motion on Torque and Force Generation during Root Canal Instrumentation with Crown-down and Single-length Techniques
      Shunsuke Kimura, Arata Ebihara, Keiichiro Maki, Miki Nishijo, Daisuke Tokita, Takashi Okiji
      Journal of Endodontics.2020; 46(2): 232.     CrossRef
    • Ex-Vivo Comparison of Torsional Stress on Nickel–Titanium Instruments Activated by Continuous Rotation or Adaptive Motion
      Joo Yeong Lee, Sang Won Kwak, Jung-Hong Ha, Hyeon-Cheol Kim
      Materials.2020; 13(8): 1900.     CrossRef
    • Influence of glide path size and operating kinetics on time to reach working length and fracture resistance of Twisted File adaptive and Endostar E3 nickel-titanium file systems
      Tamilkumaran Ramyadharshini, Inbaraj Anand Sherwood, V Shanmugham Vigneshwar, Prakasam Ernest Prince, Murugadoss Vaanjay
      Restorative Dentistry & Endodontics.2020;[Epub]     CrossRef
    • Buckling Resistance of Various Nickel-Titanium Glide Path Preparation Instruments in Dynamic or Static Mode
      Jung-Hong Ha, Sang Won Kwak, Antheunis Versluis, Hyeon-Cheol Kim
      Journal of Endodontics.2020; 46(8): 1125.     CrossRef
    • Comparison of torque, force generation and canal shaping ability between manual and nickel-titanium glide path instruments in rotary and optimum glide path motion
      Pyae Hein Htun, Arata Ebihara, Keiichiro Maki, Shunsuke Kimura, Miki Nishijo, Daisuke Tokita, Takashi Okiji
      Odontology.2020; 108(2): 188.     CrossRef
    • THE INFLUENCE OF DIFFERENT TORQUE SETTINGS ON THE AMOUNT OF APICALLY EXTRUDED DEBRIS DURING ROTARY INSTRUMENTATION
      Demet ALTUNBAŞ, Mustafa TOYOĞLU
      Cumhuriyet Dental Journal.2020; 23(3): 160.     CrossRef
    • Glide Path: “Path to the successful root canal instrumentation”- Review
      Anjali Mairal Oak
      Journal of Indian Dental Association.2020;[Epub]     CrossRef
    • Torsional fatigue strength of reciprocating and rotary pathfinding instruments manufactured from different NiTi alloys
      Rodrigo Ricci VIVAN, Murilo Priori ALCALDE, George CANDEIRO, Giulio GAVINI, Celso Luis CALDEIRA, Marco Antonio Hungaro DUARTE
      Brazilian Oral Research.2019;[Epub]     CrossRef
    • Comparison of Screw-In Forces during Movement of Endodontic Files with Different Geometries, Alloys, and Kinetics
      Sang Won Kwak, Chan-Joo Lee, Sung Kyo Kim, Hyeon-Cheol Kim, Jung-Hong Ha
      Materials.2019; 12(9): 1506.     CrossRef
    • Effect of glide path preparation with PathFile and ProGlider on the cyclic fatigue resistance of WaveOne nickel-titanium files
      Gülşah Uslu, Uğur İnan
      Restorative Dentistry & Endodontics.2019;[Epub]     CrossRef
    • Force and vibration generated in apical direction by three endodontic files of different kinematics during simulated canal preparation: An in vitro analytical study
      Ankit Nayak, PK Kankar, Prashant K Jain, Niharika Jain
      Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.2019; 233(8): 839.     CrossRef
    • Effective Establishment of Glide-Path to Reduce Torsional Stress during Nickel-Titanium Rotary Instrumentation
      Ibrahim H. Abu-Tahun, Sang Won Kwak, Jung-Hong Ha, Asgeir Sigurdsson, Mehmet Baybora Kayahan, Hyeon-Cheol Kim
      Materials.2019; 12(3): 493.     CrossRef
    • Real‐time dynamic torque values and axial forces during preparation of straight root canals using three different endodontic motors and hand preparation
      S. Bürklein, J. P. Stüber, E. Schäfer
      International Endodontic Journal.2019; 52(1): 94.     CrossRef
    • Comparison of glide paths created with K-files, PathFiles, and the ProGlider file, and their effects on subsequent WaveOne preparation in curved canals
      Linxia Zheng, Xiongfei Ji, Chengxi Li, Lulu Zuo, Xin Wei
      BMC Oral Health.2018;[Epub]     CrossRef
    • Comparison of cyclic fatigue resistance and bending properties of two reciprocating nickel‐titanium glide path files
      T. Özyürek, G. Uslu, M. Gündoğar, K. Yılmaz, N. M. Grande, G. Plotino
      International Endodontic Journal.2018; 51(9): 1047.     CrossRef
    • Root Canal Shaping Effect of Instruments with Offset Mass of Rotation in the Mandibular First Molar: A Micro–computed Tomographic Study
      Maung Maung Kyaw Moe, Jung Hong Ha, Myoung Uk Jin, Young Kyung Kim, Sung Kyo Kim
      Journal of Endodontics.2018; 44(5): 822.     CrossRef
    • Evaluation of selected mechanical properties of NiTi rotary glide path files manufactured from controlled memory wires
      Miki NISHIJO, Arata EBIHARA, Daisuke TOKITA, Hisashi DOI, Takao HANAWA, Takashi OKIJI
      Dental Materials Journal.2018; 37(4): 549.     CrossRef
    • Effect of the Glide Path Establishment on the Torque Generation to the Files during Instrumentation: An In Vitro Measurement
      Sang Won Kwak, Jung-Hong Ha, Gary Shun-Pan Cheung, Hyeon-Cheol Kim, Sung Kyo Kim
      Journal of Endodontics.2018; 44(3): 496.     CrossRef
    • Cyclic Fatigue Resistance of Novel Glide Path Instruments with Different Alloy Properties and Kinematics
      Burcu Serefoglu, Mehmet Emin Kaval, Seniha Micoogullari Kurt, Mehmet Kemal Çalişkan
      Journal of Endodontics.2018; 44(9): 1422.     CrossRef
    • Cyclic fatigue resistance of R‐Pilot, HyFlex EDM and PathFile nickel‐titanium glide path files in artificial canals with double (S‐shaped) curvature
      G. Uslu, T. Özyürek, K. Yılmaz, M. Gündoğar
      International Endodontic Journal.2018; 51(5): 584.     CrossRef
    • A Comparison of the Cyclic Fatigue Resistance of Used and New Glide Path Files
      Taha Özyürek, Gülşah Uslu, Uğur İnan
      Journal of Endodontics.2017; 43(3): 477.     CrossRef
    • Comparison of apical extrusion of intracanal bacteria by various glide-path establishing systems: an in vitro study
      Alberto Dagna, Rashid El Abed, Sameeha Hussain, Ibrahim H Abu-Tahun, Livia Visai, Federico Bertoglio, Floriana Bosco, Riccardo Beltrami, Claudio Poggio, Hyeon-Cheol Kim
      Restorative Dentistry & Endodontics.2017; 42(4): 316.     CrossRef
    • Comparing the Centering Ability of Different Pathfinding Systems and Their Effect on Final Instrumentation by Hyflex CM
      Lu Shi, Shova Wagle
      Journal of Endodontics.2017; 43(11): 1868.     CrossRef
    • Torsional Performance of ProTaper Gold Rotary Instruments during Shaping of Small Root Canals after 2 Different Glide Path Preparations
      Ana Arias, Rafaela Andrade de Vasconcelos, Alexis Hernández, Ove A. Peters
      Journal of Endodontics.2017; 43(3): 447.     CrossRef
    • Dynamic Torque and Vertical Force Analysis during Nickel-titanium Rotary Root Canal Preparation with Different Modes of Reciprocal Rotation
      Daisuke Tokita, Arata Ebihara, Miki Nishijo, Kana Miyara, Takashi Okiji
      Journal of Endodontics.2017; 43(10): 1706.     CrossRef
    • Stress Generation during Pecking Motion of Rotary Nickel-titanium Instruments with Different Pecking Depth
      Jung-Hong Ha, Sang Won Kwak, Asgeir Sigurdsson, Seok Woo Chang, Sung Kyo Kim, Hyeon-Cheol Kim
      Journal of Endodontics.2017; 43(10): 1688.     CrossRef
    • In vitro comparison of the cyclic fatigue resistance of HyFlex EDM, One G, and ProGlider nickel titanium glide path instruments in single and double curvature canals
      Koray Yılmaz, Gülşah Uslu, Taha Özyürek
      Restorative Dentistry & Endodontics.2017; 42(4): 282.     CrossRef
    • Debris extrusion by glide-path establishing endodontic instruments with different geometries
      Jung-Hong Ha, Sung Kyo Kim, Sang Won Kwak, Rashid El Abed, Yong Chul Bae, Hyeon-Cheol Kim
      Journal of Dental Sciences.2016; 11(2): 136.     CrossRef
    • Effects of Pitch Length and Heat Treatment on the Mechanical Properties of the Glide Path Preparation Instruments
      Sang Won Kwak, Jung-Hong Ha, Chan-Joo Lee, Rashid El Abed, Ibrahim H. Abu-Tahun, Hyeon-Cheol Kim
      Journal of Endodontics.2016; 42(5): 788.     CrossRef
    • Screw-in forces during instrumentation by various file systems
      Jung-Hong Ha, Sang Won Kwak, Sung-Kyo Kim, Hyeon-Cheol Kim
      Restorative Dentistry & Endodontics.2016; 41(4): 304.     CrossRef
    • Cyclic Fatigue Resistance and Force Generated by OneShape Instruments during Curved Canal Preparation
      Zhuyu Wang, Wen Zhang, Xiaolei Zhang, Luigi F. Rodella
      PLOS ONE.2016; 11(8): e0160815.     CrossRef
    • Differences in torsional performance of single- and multiple-instrument rotary systems for glide path preparation
      Ana Arias, Rupinderpal Singh, Ove A. Peters
      Odontology.2016; 104(2): 192.     CrossRef
    • Effect of glide path and apical preparation size on the incidence of apical crack during the canal preparation using Reciproc, WaveOne, and ProTaper Next systems in curved root canals: A stereomicroscope study
      Hüseyin Sinan Topçuoğlu, Salih Düzgün, Firdevs Akpek, Gamze Topçuoğlu
      Scanning.2016; 38(6): 585.     CrossRef
    • Geometric Optimization for Development of Glide Path Preparation Nickel-Titanium Rotary Instrument
      Jung-Hong Ha, Chan-Joo Lee, Sang-Won Kwak, Rashid El Abed, Dongseok Ha, Hyeon-Cheol Kim
      Journal of Endodontics.2015; 41(6): 916.     CrossRef
    • Glide Path Management with Single- and Multiple-instrument Rotary Systems in Curved Canals: A Micro–Computed Tomographic Study
      Alison Luís Kirchhoff, Rene Chu, Isabel Mello, Andres Dario Plazas Garzon, Marcelo dos Santos, Rodrigo Sanches Cunha
      Journal of Endodontics.2015; 41(11): 1880.     CrossRef
    • Safe root canal preparation using reciprocating nickel-titanium instruments
      Jung-Hong Ha
      Restorative Dentistry & Endodontics.2015; 40(3): 253.     CrossRef
    • Effect of repetitive pecking at working length for glide path preparation using G-file
      Jung-Hong Ha, Hyo-Jin Jeon, Rashid El Abed, Seok-Woo Chang, Sung-Kyo Kim, Hyeon-Cheol Kim
      Restorative Dentistry & Endodontics.2015; 40(2): 123.     CrossRef
    • Influence of a glide path on the dentinal crack formation of ProTaper Next system
      Sevinç Aktemur Türker, Emel Uzunoğlu
      Restorative Dentistry & Endodontics.2015; 40(4): 286.     CrossRef
    • ‘Screw‐in’ tendency of rotary nickel–titanium files due to design geometry
      J. H. Ha, G. S. P. Cheung, A. Versluis, C. J. Lee, S. W. Kwak, H. C. Kim
      International Endodontic Journal.2015; 48(7): 666.     CrossRef
    • Comparison of the Cyclic Fatigue Resistance of 5 Different Rotary Pathfinding Instruments Made of Conventional Nickel-Titanium Wire, M-wire, and Controlled Memory Wire
      Ismail Davut Capar, Mehmet Emin Kaval, Hüseyin Ertas, Bilge Hakan Sen
      Journal of Endodontics.2015; 41(4): 535.     CrossRef
    • Comparision of two different preparation protocol of Ni-Ti Rotary PathFile-ProTaper instruments in simulated s-shaped canals
      Elıf Delve Başer Can, Müzeyyen Gerek, Mehmet Baybora Kayahan, Kambız Mohsenı, Hakki Sunay, Gündüz Bayirli
      Acta Odontologica Scandinavica.2014; 72(1): 76.     CrossRef
    • Torsional and cyclic fatigue resistances of glide path preparation instruments: G‐file and PathFile
      Sang Yup Sung, Jung‐Hong Ha, Sang‐Won Kwak, Rashid El Abed, Kyeongmin Byeon, Hyeon‐Cheol Kim
      Scanning.2014; 36(5): 500.     CrossRef
    • Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation
      Sang-Won Kwak, Jung-Hong Ha, WooCheol Lee, Sung-Kyo Kim, Hyeon-Cheol Kim
      Restorative Dentistry & Endodontics.2014; 39(4): 270.     CrossRef
    • Shaping Ability of Different Nickel-Titanium Systems in Simulated S-shaped Canals with and without Glide Path
      Sebastian Bürklein, Thomas Poschmann, Edgar Schäfer
      Journal of Endodontics.2014; 40(8): 1231.     CrossRef
    • Stress Generation during Self-Adjusting File Movement: Minimally Invasive Instrumentation
      Hyeon-Cheol Kim, Sang Yup Sung, Jung-Hong Ha, Michael Solomonov, Jung-Min Lee, Chan-Joo Lee, Byung-Min Kim
      Journal of Endodontics.2013; 39(12): 1572.     CrossRef

    • ePub LinkePub Link
    • Cite
      CITE
      export Copy Download
      Close
      Download Citation
      Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

      Format:
      • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
      • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
      Include:
      • Citation for the content below
      Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals
      Restor Dent Endod. 2012;37(4):215-219.   Published online November 21, 2012
      Close
    • XML DownloadXML Download
    Figure
    • 0
    • 1
    Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals
    Image Image
    Figure 1 Custom-made device. (a) A simulated root canal was mounted on a tension/compression sensor by using a mounting jig. The generated signals by simulated canals were recorded; (b) ProTaper S1 instrument was synchronized with a torque sensor. The generated torque signals in mA were amplified and transferred to a computer; (c) The pecking distance was controlled by a control panel.
    Figure 2 The typical strip-chart recording the screw-in effect (solid line) and torque (dotted line) during preparation. (a) Group 1: #13 glide path; (b) Group 2: #15 glide path; (c) Group 3: #18 glide path; (d) Group 4: #20 glide path. At the moment the screw-in occurred, the torque value suddenly increased. After that, the torque value returned to the baseline. In most groups, the screw-in effect and torque increased as the file approached apical foramen. Exceptionally in group 4, the screw-in effect and torque decreased within 1 mm from the apical foramen (Asterisk).
    Influence of glide path on the screw-in effect and torque of nickel-titanium rotary files in simulated resin root canals

    Maximum screw-in effect and torque

    Different superscript letters indicate significant difference between groups in horizontal row (p < 0.05).

    The numbers in the parentheses are standard deviations.

    Table 1 Maximum screw-in effect and torque

    Different superscript letters indicate significant difference between groups in horizontal row (p < 0.05).

    The numbers in the parentheses are standard deviations.


    Restor Dent Endod : Restorative Dentistry & Endodontics
    Close layer
    TOP